Timezone: »

 
Workshop
“Could it have been different?” Counterfactuals in Minds and Machines
Nina Corvelo Benz · Ricardo Dominguez-Olmedo · Manuel Gomez-Rodriguez · Thorsten Joachims · Amir-Hossein Karimi · Stratis Tsirtsis · Isabel Valera · Sarah A Wu

Sat Jul 29 12:00 PM -- 08:00 PM (PDT) @ Meeting Room 301
Event URL: https://sites.google.com/view/counterfactuals-icml/home »

Had I left 5 minutes earlier, I would have caught the bus. Had I been driving slower, I would have avoided the accident. Counterfactual thoughts—“what if?” scenarios about outcomes contradicting what actually happened—play a key role in everyday human reasoning and decision-making. In conjunction with rapid advancements in the mathematical study of causality, there has been an increasing interest in the development of machine learning methods that support elements of counterfactual reasoning, i.e., they make predictions about outcomes that "could have been different". Such methods find applications in a wide variety of domains ranging from personalized healthcare and explainability to AI safety and offline reinforcement learning. Although the research at the intersection of causal inference and machine learning is blooming, there has been no venue so far explicitly focusing on methods involving counterfactuals. In this workshop, we aim to fill that space by facilitating interdisciplinary interactions that will shed light onto the three following questions: (i) What insights can causal machine learning take from the latest advances in cognitive science? (ii) In what use cases is each causal modeling framework most appropriate for modeling counterfactuals? (iii) What barriers need to be lifted for the wider adoption of counterfactual-based machine learning applications, like personalized healthcare?

Author Information

Nina Corvelo Benz (Max Planck Institute for Software Systems & ETH Zurich)
Ricardo Dominguez-Olmedo (Max Planck Institute for Intelligent Systems, Tübingen)
Manuel Gomez-Rodriguez (MPI-SWS)
Manuel Gomez-Rodriguez

Manuel Gomez Rodriguez is a faculty at Max Planck Institute for Software Systems. Manuel develops human-centric machine learning models and algorithms for the analysis, modeling and control of social, information and networked systems. He has received several recognitions for his research, including an outstanding paper award at NeurIPS’13 and a best research paper honorable mention at KDD’10 and WWW’17. He has served as track chair for FAT* 2020 and as area chair for every major conference in machine learning, data mining and the Web. Manuel has co-authored over 50 publications in top-tier conferences (NeurIPS, ICML, WWW, KDD, WSDM, AAAI) and journals (PNAS, Nature Communications, JMLR, PLOS Computational Biology). Manuel holds a BS in Electrical Engineering from Carlos III University, a MS and PhD in Electrical Engineering from Stanford University, and has received postdoctoral training at the Max Planck Institute for Intelligent Systems.

Thorsten Joachims (Cornell University)
Amir-Hossein Karimi (University of Waterloo)
Stratis Tsirtsis (Max Planck Institute for Software Systems)

Stratis Tsirtsis is a Ph.D. candidate at the Max Planck Institute for Software Systems. He is interested in building machine learning systems to inform decisions about individuals who present strategic behavior.

Isabel Valera (Saarland University)

Isabel Valera is a full Professor on Machine Learning at the Department of Computer Science of Saarland University in Saarbrücken (Germany), and Adjunct Faculty at MPI for Software Systems in Saarbrücken (Germany). She is also a scholar of the European Laboratory for Learning and Intelligent Systems (ELLIS). Prior to this, she was an independent group leader at the MPI for Intelligent Systems in Tübingen (Germany). She has held a German Humboldt Post-Doctoral Fellowship, and a “Minerva fast track” fellowship from the Max Planck Society. She obtained her PhD in 2014 and MSc degree in 2012 from the University Carlos III in Madrid (Spain), and worked as postdoctoral researcher at the MPI for Software Systems (Germany) and at the University of Cambridge (UK). Her research focuses on developing machine learning methods that are flexible, robust, interpretable and fair to analyze real-world data.

Sarah A Wu (Stanford University)

More from the Same Authors