Timezone: »
Systems that can learn interactively from their end-users are quickly becoming widespread in real-world applications. Typically humans provide tagged rewards or scalar feedback for such interactive learning systems. However, humans offer a wealth of implicit information (such as multimodal cues in the form of natural language, speech, eye movements, facial expressions, gestures etc.) which interactive learning algorithms can leverage during the process of human-machine interaction to create a grounding for human intent, and thereby better assist end-users. A closed-loop sequential decision-making domain offers unique challenges when learning from humans -– (1) the data distribution may be influenced by the choices of the algorithm itself, and thus interactive ML algorithms need to adaptively learn from human feedback, (2) the nature of the environment itself changes rapidly, (3) humans may express their intent in various forms of feedback amenable to naturalistic real-world settings, going beyond tagged rewards or demonstrations. By organizing this workshop, we attempt to bring together interdisciplinary experts in interactive machine learning, reinforcement learning, human-computer interaction, cognitive science, and robotics to explore and foster discussions on such challenges. We envision that this exchange of ideas within and across disciplines can build new bridges, address some of the most valuable challenges in interactive learning with implicit human feedback, and also provide guidance to young researchers interested in growing their careers in this space.
Author Information
Andi Peng (MIT)
Akanksha Saran (Microsoft Research)
Andreea Bobu (University of California Berkeley)
Tengyang Xie (University of Illinois at Urbana-Champaign)
Pierre-Yves Oudeyer (Inria)
Dr. Pierre-Yves Oudeyer is Research Director (DR1) at Inria and head of the Inria and Ensta-ParisTech FLOWERS team (France). Before, he has been a permanent researcher in Sony Computer Science Laboratory for 8 years (1999-2007). After working on computational models of language evolution, he is now working on developmental and social robotics, focusing on sensorimotor development, language acquisition and life-long learning in robots. Strongly inspired by infant development, the mechanisms he studies include artificial curiosity, intrinsic motivation, the role of morphology in learning motor control, human-robot interfaces, joint attention and joint intentional understanding, and imitation learning. He has published a book, more than 80 papers in international journals and conferences, holds 8 patents, gave several invited keynote lectures in international conferences, and received several prizes for his work in developmental robotics and on the origins of language. In particular, he is laureate of the ERC Starting Grant EXPLORERS. He is editor of the IEEE CIS Newsletter on Autonomous Mental Development, and associate editor of IEEE Transactions on Autonomous Mental Development, Frontiers in Neurorobotics, and of the International Journal of Social Robotics. He is also working actively for the diffusion of science towards the general public, through the writing of popular science articles and participation to radio and TV programs as well as science exhibitions. Web:http://www.pyoudeyer.com and http://flowers.inria.fr
Anca Dragan (University of California, Berkeley)
John Langford (Microsoft Research)
More from the Same Authors
-
2021 : Provable RL with Exogenous Distractors via Multistep Inverse Dynamics »
Yonathan Efroni · Dipendra Misra · Akshay Krishnamurthy · Alekh Agarwal · John Langford -
2021 : Policy Finetuning: Bridging Sample-Efficient Offline and Online Reinforcement Learning »
Tengyang Xie · Nan Jiang · Huan Wang · Caiming Xiong · Yu Bai -
2022 : Interaction-Grounded Learning with Action-inclusive Feedback »
Tengyang Xie · Akanksha Saran · Dylan Foster · Lekan Molu · Ida Momennejad · Nan Jiang · Paul Mineiro · John Langford -
2022 : A Study of Causal Confusion in Preference-Based Reward Learning »
Jeremy Tien · Zhiyang He · Zackory Erickson · Anca Dragan · Daniel S Brown -
2023 Poster: Contextual Reliability: When Different Features Matter in Different Contexts »
Gaurav Ghosal · Amrith Setlur · Daniel S Brown · Anca Dragan · Aditi Raghunathan -
2023 Poster: Diagnosis, Feedback, Adaptation: A Human-in-the-Loop Framework for Test-time Policy Adaptation »
Andi Peng · Aviv Netanyahu · Mark Ho · Tianmin Shu · Andreea Bobu · Julie Shah · Pulkit Agrawal -
2023 Poster: Grounding Large Language Models in Interactive Environments with Online Reinforcement Learning »
Thomas Carta · Clément Romac · Thomas Wolf · sylvain lamprier · Olivier Sigaud · Pierre-Yves Oudeyer -
2023 Poster: Automatically Auditing Large Language Models via Discrete Optimization »
Erik Jones · Anca Dragan · Aditi Raghunathan · Jacob Steinhardt -
2023 Tutorial: Discovering Agent-Centric Latent States in Theory and in Practice »
John Langford · Alex Lamb -
2022 : Beyond Learning from Demonstrations »
Andreea Bobu -
2022 Poster: Asking for Knowledge (AFK): Training RL Agents to Query External Knowledge Using Language »
Iou-Jen Liu · Xingdi Yuan · Marc-Alexandre Côté · Pierre-Yves Oudeyer · Alex Schwing -
2022 Poster: Adversarially Trained Actor Critic for Offline Reinforcement Learning »
Ching-An Cheng · Tengyang Xie · Nan Jiang · Alekh Agarwal -
2022 Spotlight: Asking for Knowledge (AFK): Training RL Agents to Query External Knowledge Using Language »
Iou-Jen Liu · Xingdi Yuan · Marc-Alexandre Côté · Pierre-Yves Oudeyer · Alex Schwing -
2022 Oral: Adversarially Trained Actor Critic for Offline Reinforcement Learning »
Ching-An Cheng · Tengyang Xie · Nan Jiang · Alekh Agarwal -
2022 Poster: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2022 Poster: Contextual Bandits with Large Action Spaces: Made Practical »
Yinglun Zhu · Dylan Foster · John Langford · Paul Mineiro -
2022 Spotlight: Contextual Bandits with Large Action Spaces: Made Practical »
Yinglun Zhu · Dylan Foster · John Langford · Paul Mineiro -
2022 Spotlight: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2022 Poster: Estimating and Penalizing Induced Preference Shifts in Recommender Systems »
Micah Carroll · Anca Dragan · Stuart Russell · Dylan Hadfield-Menell -
2022 Spotlight: Estimating and Penalizing Induced Preference Shifts in Recommender Systems »
Micah Carroll · Anca Dragan · Stuart Russell · Dylan Hadfield-Menell -
2022 : Learning to interact: PARTIAL OBSERVABILITY + GAME Theory of mind on steroids »
Anca Dragan -
2022 : Learning to interact: PARTIAL OBSERVABILITY The actions you take as part of the task are the queries! »
Anca Dragan -
2022 : Q&A »
Dorsa Sadigh · Anca Dragan -
2022 Tutorial: Learning for Interactive Agents »
Dorsa Sadigh · Anca Dragan -
2022 : Learning objectives and preferences: WHAT DATA? From diverse types of human data »
Anca Dragan -
2022 : Introduction »
John Langford -
2021 : Robust Robot Learning via Human-Guided Intermediate Representations »
Andreea Bobu -
2021 : RL Foundation Panel »
Matthew Botvinick · Thomas Dietterich · Leslie Kaelbling · John Langford · Warrren B Powell · Csaba Szepesvari · Lihong Li · Yuxi Li -
2021 Poster: Interaction-Grounded Learning »
Tengyang Xie · John Langford · Paul Mineiro · Ida Momennejad -
2021 Spotlight: Interaction-Grounded Learning »
Tengyang Xie · John Langford · Paul Mineiro · Ida Momennejad -
2021 Poster: Batch Value-function Approximation with Only Realizability »
Tengyang Xie · Nan Jiang -
2021 Poster: ChaCha for Online AutoML »
Qingyun Wu · Chi Wang · John Langford · Paul Mineiro · Marco Rossi -
2021 Poster: TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL »
Clément Romac · Rémy Portelas · Katja Hofmann · Pierre-Yves Oudeyer -
2021 Spotlight: ChaCha for Online AutoML »
Qingyun Wu · Chi Wang · John Langford · Paul Mineiro · Marco Rossi -
2021 Spotlight: TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL »
Clément Romac · Rémy Portelas · Katja Hofmann · Pierre-Yves Oudeyer -
2021 Spotlight: Batch Value-function Approximation with Only Realizability »
Tengyang Xie · Nan Jiang -
2021 Poster: Policy Gradient Bayesian Robust Optimization for Imitation Learning »
Zaynah Javed · Daniel Brown · Satvik Sharma · Jerry Zhu · Ashwin Balakrishna · Marek Petrik · Anca Dragan · Ken Goldberg -
2021 Spotlight: Policy Gradient Bayesian Robust Optimization for Imitation Learning »
Zaynah Javed · Daniel Brown · Satvik Sharma · Jerry Zhu · Ashwin Balakrishna · Marek Petrik · Anca Dragan · Ken Goldberg -
2021 Town Hall: Town Hall »
John Langford · Marina Meila · Tong Zhang · Le Song · Stefanie Jegelka · Csaba Szepesvari -
2021 Poster: Value Alignment Verification »
Daniel Brown · Jordan Schneider · Anca Dragan · Scott Niekum -
2021 Spotlight: Value Alignment Verification »
Daniel Brown · Jordan Schneider · Anca Dragan · Scott Niekum -
2021 Expo Workshop: Real World RL: Azure Personalizer & Vowpal Wabbit »
Sheetal Lahabar · Etienne Kintzler · Mark Rucker · Bogdan Mazoure · Qingyun Wu · Pavithra Srinath · Jack Gerrits · Olga Vrousgou · John Langford · Eduardo Salinas -
2020 : Invited Talk 7: Prof. Anca Dragan from UC Berkeley »
Anca Dragan -
2020 : "Active Learning through Physically-embodied, Synthesized-from-“scratch” Queries" »
Anca Dragan -
2020 : Discussion Panel »
Krzysztof Dembczynski · Prateek Jain · Alina Beygelzimer · Inderjit Dhillon · Anna Choromanska · Maryam Majzoubi · Yashoteja Prabhu · John Langford -
2020 Workshop: Workshop on eXtreme Classification: Theory and Applications »
Anna Choromanska · John Langford · Maryam Majzoubi · Yashoteja Prabhu -
2020 Poster: Learning Human Objectives by Evaluating Hypothetical Behavior »
Siddharth Reddy · Anca Dragan · Sergey Levine · Shane Legg · Jan Leike -
2020 Poster: Kinematic State Abstraction and Provably Efficient Rich-Observation Reinforcement Learning »
Dipendra Kumar Misra · Mikael Henaff · Akshay Krishnamurthy · John Langford -
2019 Workshop: Exploration in Reinforcement Learning Workshop »
Benjamin Eysenbach · Benjamin Eysenbach · Surya Bhupatiraju · Shixiang Gu · Harrison Edwards · Martha White · Pierre-Yves Oudeyer · Kenneth Stanley · Emma Brunskill -
2019 : panel discussion with Craig Boutilier (Google Research), Emma Brunskill (Stanford), Chelsea Finn (Google Brain, Stanford, UC Berkeley), Mohammad Ghavamzadeh (Facebook AI), John Langford (Microsoft Research) and David Silver (Deepmind) »
Peter Stone · Craig Boutilier · Emma Brunskill · Chelsea Finn · John Langford · David Silver · Mohammad Ghavamzadeh -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 : invited talk by John Langford (Microsoft Research): How do we make Real World Reinforcement Learning revolution? »
John Langford -
2019 Poster: Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback »
Chicheng Zhang · Alekh Agarwal · Hal Daumé III · John Langford · Sahand Negahban -
2019 Poster: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Oral: Warm-starting Contextual Bandits: Robustly Combining Supervised and Bandit Feedback »
Chicheng Zhang · Alekh Agarwal · Hal Daumé III · John Langford · Sahand Negahban -
2019 Oral: On the Feasibility of Learning, Rather than Assuming, Human Biases for Reward Inference »
Rohin Shah · Noah Gundotra · Pieter Abbeel · Anca Dragan -
2019 Poster: CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning »
Cédric Colas · Pierre-Yves Oudeyer · Olivier Sigaud · Pierre Fournier · Mohamed Chetouani -
2019 Poster: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2019 Poster: Learning a Prior over Intent via Meta-Inverse Reinforcement Learning »
Kelvin Xu · Ellis Ratner · Anca Dragan · Sergey Levine · Chelsea Finn -
2019 Poster: Contextual Memory Trees »
Wen Sun · Alina Beygelzimer · Hal Daumé III · John Langford · Paul Mineiro -
2019 Oral: Provably efficient RL with Rich Observations via Latent State Decoding »
Simon Du · Akshay Krishnamurthy · Nan Jiang · Alekh Agarwal · Miroslav Dudik · John Langford -
2019 Oral: Learning a Prior over Intent via Meta-Inverse Reinforcement Learning »
Kelvin Xu · Ellis Ratner · Anca Dragan · Sergey Levine · Chelsea Finn -
2019 Oral: CURIOUS: Intrinsically Motivated Modular Multi-Goal Reinforcement Learning »
Cédric Colas · Pierre-Yves Oudeyer · Olivier Sigaud · Pierre Fournier · Mohamed Chetouani -
2019 Oral: Contextual Memory Trees »
Wen Sun · Alina Beygelzimer · Hal Daumé III · John Langford · Paul Mineiro -
2018 Poster: An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning »
Dhruv Malik · Malayandi Palaniappan · Jaime Fisac · Dylan Hadfield-Menell · Stuart Russell · Anca Dragan -
2018 Poster: GEP-PG: Decoupling Exploration and Exploitation in Deep Reinforcement Learning Algorithms »
Cédric Colas · Olivier Sigaud · Pierre-Yves Oudeyer -
2018 Oral: An Efficient, Generalized Bellman Update For Cooperative Inverse Reinforcement Learning »
Dhruv Malik · Malayandi Palaniappan · Jaime Fisac · Dylan Hadfield-Menell · Stuart Russell · Anca Dragan -
2018 Oral: GEP-PG: Decoupling Exploration and Exploitation in Deep Reinforcement Learning Algorithms »
Cédric Colas · Olivier Sigaud · Pierre-Yves Oudeyer -
2018 Poster: Learning Deep ResNet Blocks Sequentially using Boosting Theory »
Furong Huang · Jordan Ash · John Langford · Robert Schapire -
2018 Oral: Learning Deep ResNet Blocks Sequentially using Boosting Theory »
Furong Huang · Jordan Ash · John Langford · Robert Schapire -
2017 Poster: Contextual Decision Processes with low Bellman rank are PAC-Learnable »
Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Talk: Contextual Decision Processes with low Bellman rank are PAC-Learnable »
Nan Jiang · Akshay Krishnamurthy · Alekh Agarwal · John Langford · Robert Schapire -
2017 Poster: Logarithmic Time One-Against-Some »
Hal Daumé · Nikos Karampatziakis · John Langford · Paul Mineiro -
2017 Poster: Active Learning for Cost-Sensitive Classification »
Akshay Krishnamurthy · Alekh Agarwal · Tzu-Kuo Huang · Hal Daumé III · John Langford -
2017 Talk: Active Learning for Cost-Sensitive Classification »
Akshay Krishnamurthy · Alekh Agarwal · Tzu-Kuo Huang · Hal Daumé III · John Langford -
2017 Talk: Logarithmic Time One-Against-Some »
Hal Daumé · Nikos Karampatziakis · John Langford · Paul Mineiro -
2017 Tutorial: Real World Interactive Learning »
Alekh Agarwal · John Langford