Timezone: »
Recent advances in algorithmic design and principled, theory-driven deep learning architectures have sparked a growing interest in control and dynamical system theory. Complementary, machine learning plays an important role in enhancing existing control theory algorithms in terms of performance and scalability. The boundaries between both disciplines are blurring even further with the rise of modern reinforcement learning, a field at the crossroad of data-driven control theory and machine learning. This workshop aims to unravel the mutual relationship between learning, control, and dynamical systems and to shed light on recent parallel developments in different communities. Strengthening the connection between learning and control will open new possibilities for interdisciplinary research areas.
Author Information
Valentin De Bortoli (ENS Ulm)
Charlotte Bunne (ETH Zurich)
Guan-Horng Liu (Georgia Institute of Technology)
Tianrong Chen (Georgia Institute of Technology)
Maxim Raginsky
Pratik Chaudhari (UPenn, AWS)
Melanie Zeilinger (ETH Zurich)
Animashree Anandkumar (Caltech and NVIDIA)
More from the Same Authors
-
2021 : Continuous Doubly Constrained Batch Reinforcement Learning »
Rasool Fakoor · Jonas Mueller · Kavosh Asadi · Pratik Chaudhari · Alex Smola -
2022 : Recovering Stochastic Dynamics via Gaussian Schrödinger Bridges »
Ya-Ping Hsieh · Charlotte Bunne · Marco Cuturi · Andreas Krause -
2022 : Physics-Informed Neural Operator for Learning Partial Differential Equations »
Zongyi Li · Hongkai Zheng · Nikola Kovachki · David Jin · Haoxuan Chen · Burigede Liu · Kamyar Azizzadenesheli · Animashree Anandkumar -
2022 : Riemannian Diffusion Schr\"odinger Bridge »
James Thornton · Valentin De Bortoli · Michael Hutchinson · Emile Mathieu · Yee Whye Teh · Arnaud Doucet -
2022 : Recovering Stochastic Dynamics via Gaussian Schrödinger Bridges »
Charlotte Bunne · Ya-Ping Hsieh · Marco Cuturi · Andreas Krause -
2023 Poster: The Value of Out-of-Distribution Data »
Ashwin De Silva · Rahul Ramesh · Carey Priebe · Pratik Chaudhari · Joshua Vogelstein -
2023 Poster: A Picture of the Space of Typical Learnable Tasks »
Rahul Ramesh · Jialin Mao · Itay Griniasty · Rubing Yang · Han Kheng Teoh · Mark Transtrum · James Sethna · Pratik Chaudhari -
2023 Poster: SE(3) diffusion model with application to protein backbone generation »
Jason Yim · Brian Trippe · Valentin De Bortoli · Emile Mathieu · Arnaud Doucet · Regina Barzilay · Tommi Jaakkola -
2023 Poster: I$^2$SB: Image-to-Image Schr\"odinger Bridge »
Guan-Horng Liu · Arash Vahdat · De-An Huang · Evangelos Theodorou · Weili Nie · Anima Anandkumar -
2023 Tutorial: Optimal Transport in Learning, Control, and Dynamical Systems »
Charlotte Bunne · marco cuturi -
2022 : Q/A: Melanie Zeilinger »
Melanie Zeilinger -
2022 : Invited Talk: Melanie Zeilinger »
Melanie Zeilinger -
2022 Poster: Diffusion Models for Adversarial Purification »
Weili Nie · Brandon Guo · Yujia Huang · Chaowei Xiao · Arash Vahdat · Animashree Anandkumar -
2022 Poster: Does the Data Induce Capacity Control in Deep Learning? »
Rubing Yang · Jialin Mao · Pratik Chaudhari -
2022 Spotlight: Diffusion Models for Adversarial Purification »
Weili Nie · Brandon Guo · Yujia Huang · Chaowei Xiao · Arash Vahdat · Animashree Anandkumar -
2022 Spotlight: Does the Data Induce Capacity Control in Deep Learning? »
Rubing Yang · Jialin Mao · Pratik Chaudhari -
2022 Poster: Deep Reference Priors: What is the best way to pretrain a model? »
Yansong Gao · Rahul Ramesh · Pratik Chaudhari -
2022 Spotlight: Deep Reference Priors: What is the best way to pretrain a model? »
Yansong Gao · Rahul Ramesh · Pratik Chaudhari -
2022 Poster: Langevin Monte Carlo for Contextual Bandits »
Pan Xu · Hongkai Zheng · Eric Mazumdar · Kamyar Azizzadenesheli · Animashree Anandkumar -
2022 Poster: Understanding The Robustness in Vision Transformers »
Zhou Daquan · Zhiding Yu · Enze Xie · Chaowei Xiao · Animashree Anandkumar · Jiashi Feng · Jose M. Alvarez -
2022 Spotlight: Understanding The Robustness in Vision Transformers »
Zhou Daquan · Zhiding Yu · Enze Xie · Chaowei Xiao · Animashree Anandkumar · Jiashi Feng · Jose M. Alvarez -
2022 Spotlight: Langevin Monte Carlo for Contextual Bandits »
Pan Xu · Hongkai Zheng · Eric Mazumdar · Kamyar Azizzadenesheli · Animashree Anandkumar -
2021 : Spotlight Set 2-3 | Multi-Scale Representation Learning on Proteins »
Workshop CompBio · Charlotte Bunne -
2021 : Morning Poster Session: JKOnet: Proximal Optimal Transport Modeling of Population Dynamics »
Charlotte Bunne -
2021 : Invited Speaker: Animashree Anandkumar: Stability-aware reinforcement learning in dynamical systems »
Animashree Anandkumar -
2021 : Contributed Talk: JKOnet: Proximal Optimal Transport Modeling of Population Dynamics »
Charlotte Bunne -
2021 : Invited Talk: Maxim Raginsky »
Maxim Raginsky -
2021 Workshop: Workshop on Socially Responsible Machine Learning »
Chaowei Xiao · Animashree Anandkumar · Mingyan Liu · Dawn Song · Raquel Urtasun · Jieyu Zhao · Xueru Zhang · Cihang Xie · Xinyun Chen · Bo Li -
2021 Poster: An Information-Geometric Distance on the Space of Tasks »
Yansong Gao · Pratik Chaudhari -
2021 Spotlight: An Information-Geometric Distance on the Space of Tasks »
Yansong Gao · Pratik Chaudhari -
2021 Poster: Dynamic Game Theoretic Neural Optimizer »
Guan-Horng Liu · Tianrong Chen · Evangelos Theodorou -
2021 Oral: Dynamic Game Theoretic Neural Optimizer »
Guan-Horng Liu · Tianrong Chen · Evangelos Theodorou -
2020 : Q&A: Anima Anandakumar »
Animashree Anandkumar · Jessica Forde -
2020 : Invited Talks: Anima Anandakumar »
Animashree Anandkumar -
2020 Poster: A Free-Energy Principle for Representation Learning »
Yansong Gao · Pratik Chaudhari -
2020 : Mentoring Panel: Doina Precup, Deborah Raji, Anima Anandkumar, Angjoo Kanazawa and Sinead Williamson (moderator). »
Doina Precup · Inioluwa Raji · Angjoo Kanazawa · Sinead A Williamson · Animashree Anandkumar -
2019 Poster: Learning Generative Models across Incomparable Spaces »
Charlotte Bunne · David Alvarez-Melis · Andreas Krause · Stefanie Jegelka -
2019 Oral: Learning Generative Models across Incomparable Spaces »
Charlotte Bunne · David Alvarez-Melis · Andreas Krause · Stefanie Jegelka -
2018 Poster: StrassenNets: Deep Learning with a Multiplication Budget »
Michael Tschannen · Aran Khanna · Animashree Anandkumar -
2018 Oral: StrassenNets: Deep Learning with a Multiplication Budget »
Michael Tschannen · Aran Khanna · Animashree Anandkumar