Timezone: »
Planning to Fairly Allocate: Probabilistic Fairness in the Restless Bandit Setting
Christine Herlihy · Aviva Prins · Aravind Srinivasan · John P Dickerson
Restless and collapsing bandits are often used to model budget-constrained resource allocation in settings where receiving the resource increases the probability that an arm will transition to, or remain in, a desirable state. However, SOTA Whittle-index-based approaches to this planning problem either do not consider fairness among arms, or incentivize fairness without guaranteeing it. We introduce ProbFair, an algorithm which finds the best (reward-maximizing) policy that: (a) satisfies the budget constraint; and (b) enforces bounds $[\ell, u]$ on the probability of being pulled at each timestep. We evaluate our algorithm on a real-world application, where interventions support continuous positive airway pressure (CPAP) therapy adherence among patients, as well as on a broader class of synthetic transition matrices. ProbFair preserves utility while providing fairness guarantees.
Author Information
Christine Herlihy (University of Maryland, College Park)
Aviva Prins (University of Maryland, College Park)
Aravind Srinivasan (Amazon)
John P Dickerson (Arthur AI & Univ. of Maryland)
More from the Same Authors
-
2021 : PreferenceNet: Encoding Human Preferences in Auction Design »
Neehar Peri · Michael Curry · Samuel Dooley · John P Dickerson -
2022 : Centralized vs Individual Models for Decision Making in Interconnected Infrastructure »
Stephanie Allen · John P Dickerson · Steven Gabriel -
2023 Poster: Generalized Reductions: Making any Hierarchical Clustering Fair and Balanced with Low Cost »
Marina Knittel · Max Springer · John P Dickerson · MohammadTaghi Hajiaghayi -
2022 Poster: Cliff Diving: Exploring Reward Surfaces in Reinforcement Learning Environments »
Ryan Sullivan · Jordan Terry · Benjamin Black · John P Dickerson -
2022 Poster: Measuring Representational Robustness of Neural Networks Through Shared Invariances »
Vedant Nanda · Till Speicher · Camila Kolling · John P Dickerson · Krishna Gummadi · Adrian Weller -
2022 Spotlight: Cliff Diving: Exploring Reward Surfaces in Reinforcement Learning Environments »
Ryan Sullivan · Jordan Terry · Benjamin Black · John P Dickerson -
2022 Oral: Measuring Representational Robustness of Neural Networks Through Shared Invariances »
Vedant Nanda · Till Speicher · Camila Kolling · John P Dickerson · Krishna Gummadi · Adrian Weller -
2022 Poster: Certified Neural Network Watermarks with Randomized Smoothing »
Arpit Bansal · Ping-yeh Chiang · Michael Curry · Rajiv Jain · Curtis Wigington · Varun Manjunatha · John P Dickerson · Tom Goldstein -
2022 Spotlight: Certified Neural Network Watermarks with Randomized Smoothing »
Arpit Bansal · Ping-yeh Chiang · Michael Curry · Rajiv Jain · Curtis Wigington · Varun Manjunatha · John P Dickerson · Tom Goldstein -
2021 Poster: Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks »
Avi Schwarzschild · Micah Goldblum · Arjun Gupta · John P Dickerson · Tom Goldstein -
2021 Spotlight: Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks »
Avi Schwarzschild · Micah Goldblum · Arjun Gupta · John P Dickerson · Tom Goldstein -
2020 Poster: A Pairwise Fair and Community-preserving Approach to k-Center Clustering »
Brian Brubach · Darshan Chakrabarti · John P Dickerson · Samir Khuller · Aravind Srinivasan · Leonidas Tsepenekas -
2020 Poster: Measuring Non-Expert Comprehension of Machine Learning Fairness Metrics »
Debjani Saha · Candice Schumann · Duncan McElfresh · John P Dickerson · Michelle Mazurek · Michael Tschantz