Timezone: »

Perspectives on Incorporating Expert Feedback into Model Updates
Valerie Chen · Umang Bhatt · Hoda Heidari · Adrian Weller · Ameet Talwalkar

Machine learning (ML) practitioners are increasingly tasked with developing models that are aligned with non-technical experts' values and goals. However, there has been insufficient consideration on how practitioners should translate domain expertise into ML updates. In this paper, we consider how to capture interactions between practitioners and experts systematically. We devise a taxonomy to match expert feedback types with practitioner updates. A practitioner may receive feedback from an expert at the observation- or domain-level, and convert this feedback into updates to the dataset, loss function, or parameter space. We review existing work from ML and human-computer interaction to describe this feedback-update taxonomy, and highlight the insufficient consideration given to incorporating feedback from non-technical experts. We end with open questions that naturally arise from our proposed taxonomy and subsequent survey.

Author Information

Valerie Chen (Carnegie Mellon University)
Umang Bhatt (University of Cambridge)
Hoda Heidari (CMU)
Adrian Weller (University of Cambridge, Alan Turing Institute)
Adrian Weller

Adrian Weller is Programme Director for AI at The Alan Turing Institute, the UK national institute for data science and AI, and is a Turing AI Fellow leading work on trustworthy Machine Learning (ML). He is a Principal Research Fellow in ML at the University of Cambridge, and at the Leverhulme Centre for the Future of Intelligence where he is Programme Director for Trust and Society. His interests span AI, its commercial applications and helping to ensure beneficial outcomes for society. Previously, Adrian held senior roles in finance. He received a PhD in computer science from Columbia University, and an undergraduate degree in mathematics from Trinity College, Cambridge.

Ameet Talwalkar (Carnegie Mellon University)

More from the Same Authors