Timezone: »
To achieve a graph representation, most Graph Neural Networks (GNNs) follow two steps: first, each graph is decomposed into a number of subgraphs (which we call the recursion step), and then the collection of subgraphs is encoded. While recently proposed higher-order networks show a remarkable increase in the expressive power through the idea of deeper neighborhoods (i.e., deeper recursion), the power of (deeper) recursion in GNNs is still not fully understood. In this paper, we study a fundamental question: what is the power of recursion by itself, without the use of any other pooling operation? To make it concrete, we consider a pure recursion-based GNN which we call Recursive Neighborhood Pooling GNN (RNP-GNN). The expressive power of an RNP-GNN and its computational cost quantifies the (purified) power of recursion for a graph representation network. We quantify the power by means of counting substructures which is one main limitation of the Message Passing graph Neural Networks (MPNNs), and show how they can exploit the sparsity of the underlying graph to achieve low-cost powerful representations. We also compare the recent lower bounds on the time complexity and show how recursive-based networks are near optimal.
Author Information
Behrooz Tahmasebi (Massachusetts Institute of Technology)
Derek Lim (MIT)
Stefanie Jegelka (Massachusetts Institute of Technology)
More from the Same Authors
-
2023 : Sample Complexity Bounds for Estimating the Wasserstein Distance under Invariances »
Behrooz Tahmasebi · Stefanie Jegelka -
2023 : The Exact Sample Complexity Gain from Invariances for Kernel Regression »
Behrooz Tahmasebi · Stefanie Jegelka -
2023 : Learning Structured Representations with Equivariant Contrastive Learning »
Sharut Gupta · Joshua Robinson · Derek Lim · Soledad Villar · Stefanie Jegelka -
2023 : Expressive Sign Equivariant Networks for Spectral Geometric Learning »
Derek Lim · Joshua Robinson · Stefanie Jegelka · Haggai Maron -
2023 : Positional Encodings as Group Representations: A Unified Framework »
Derek Lim · Hannah Lawrence · Ningyuan Huang · Erik Thiede -
2023 Oral: Equivariant Polynomials for Graph Neural Networks »
Omri Puny · Derek Lim · Bobak T Kiani · Haggai Maron · Yaron Lipman -
2023 Poster: Equivariant Polynomials for Graph Neural Networks »
Omri Puny · Derek Lim · Bobak T Kiani · Haggai Maron · Yaron Lipman -
2023 Poster: Efficiently predicting high resolution mass spectra with graph neural networks »
Michael Murphy · Stefanie Jegelka · Ernest Fraenkel · Tobias Kind · David Healey · Thomas Butler -
2023 Poster: Graph Inductive Biases in Transformers without Message Passing »
Liheng Ma · Chen Lin · Derek Lim · Adriana Romero Soriano · Puneet Dokania · Mark Coates · Phil Torr · Ser Nam Lim -
2023 Poster: InfoOT: Information Maximizing Optimal Transport »
Ching-Yao Chuang · Stefanie Jegelka · David Alvarez-Melis -
2022 : Sign and Basis Invariant Networks for Spectral Graph Representation Learning »
Derek Lim · Joshua Robinson · Lingxiao Zhao · Tess Smidt · Suvrit Sra · Haggai Maron · Stefanie Jegelka -
2022 : Sign and Basis Invariant Networks for Spectral Graph Representation Learning »
Derek Lim · Joshua Robinson -
2022 Poster: Understanding Doubly Stochastic Clustering »
Tianjiao Ding · Derek Lim · Rene Vidal · Benjamin Haeffele -
2022 Spotlight: Understanding Doubly Stochastic Clustering »
Tianjiao Ding · Derek Lim · Rene Vidal · Benjamin Haeffele -
2021 Poster: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Poster: Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth »
Keyulu Xu · Mozhi Zhang · Stefanie Jegelka · Kenji Kawaguchi -
2021 Spotlight: Optimization of Graph Neural Networks: Implicit Acceleration by Skip Connections and More Depth »
Keyulu Xu · Mozhi Zhang · Stefanie Jegelka · Kenji Kawaguchi -
2021 Spotlight: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2020 Workshop: Graph Representation Learning and Beyond (GRL+) »
Petar Veličković · Michael M. Bronstein · Andreea Deac · Will Hamilton · Jessica Hamrick · Milad Hashemi · Stefanie Jegelka · Jure Leskovec · Renjie Liao · Federico Monti · Yizhou Sun · Kevin Swersky · Rex (Zhitao) Ying · Marinka Zitnik -
2020 Poster: Generalization and Representational Limits of Graph Neural Networks »
Vikas K Garg · Stefanie Jegelka · Tommi Jaakkola -
2020 Poster: Optimal approximation for unconstrained non-submodular minimization »
Marwa El Halabi · Stefanie Jegelka -
2020 Poster: Complexity of Finding Stationary Points of Nonconvex Nonsmooth Functions »
Jingzhao Zhang · Hongzhou Lin · Stefanie Jegelka · Suvrit Sra · Ali Jadbabaie -
2020 Poster: Estimating Generalization under Distribution Shifts via Domain-Invariant Representations »
Ching-Yao Chuang · Antonio Torralba · Stefanie Jegelka