Timezone: »
As a powerful tool for modeling complex relationships, hypergraphs are gaining popularity from the graph learning community. However, commonly used frameworks in deep hypergraph learning focus on hypergraphs with edge-independent vertex weights (EIVWs), without considering hypergraphs with edge-dependent vertex weights (EDVWs) that have more modeling power. To compensate for this, we present General Hypergraph Spectral Convolution (GHSC), a general learning framework that not only handles EDVW and EIVW hypergraphs, but more importantly, enables theoretically explicitly utilizing the existing powerful Graph Convolutional Neural Networks (GCNNs) such that largely ease the design of Hypergraph Neural Networks. In this framework, the graph Laplacian of the given undirected GCNNs is replaced with a unified hypergraphLaplacian that incorporates vertex weight information from a random walk perspective by equating our defined generalized hypergraphs with simple undirected graphs. Extensive experiments from various domains including social network analysis, visual objective classification, and protein learning demonstrate the state-of-the-art performance of the proposed framework.
Author Information
Jiying Zhang (Tsinghua University)
fuyang li (Tsinghua university)
Xi Xiao (Tsinghua University)
Tingyang Xu (Tencent Holdings)
Yu Rong (Tencent AI Lab)
Junzhou Huang (University of Texas at Arlington / Tencent AI Lab)
Yatao Bian (Tencent AI Lab)
More from the Same Authors
-
2022 : Invariance Principle Meets Out-of-Distribution Generalization on Graphs »
Yongqiang Chen · Yonggang Zhang · Yatao Bian · Han Yang · Kaili MA · Binghui Xie · Tongliang Liu · Bo Han · James Cheng -
2022 : Pareto Invariant Risk Minimization »
Yongqiang Chen · Kaiwen Zhou · Yatao Bian · Binghui Xie · Kaili MA · Yonggang Zhang · Han Yang · Bo Han · James Cheng -
2022 : GraphTTA: Test Time Adaptation on Graph Neural Networks »
Guanzi Chen · Jiying Zhang · Xi Xiao · Yang Li -
2023 : Towards Understanding Feature Learning in Out-of-Distribution Generalization »
Yongqiang Chen · Wei Huang · Kaiwen Zhou · Yatao Bian · Bo Han · James Cheng -
2022 : DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise Annotations »
Yatao Bian -
2022 Poster: $p$-Laplacian Based Graph Neural Networks »
Guoji Fu · Peilin Zhao · Yatao Bian -
2022 Poster: Local Augmentation for Graph Neural Networks »
Songtao Liu · Rex (Zhitao) Ying · Hanze Dong · Lanqing Li · Tingyang Xu · Yu Rong · Peilin Zhao · Junzhou Huang · Dinghao Wu -
2022 Spotlight: $p$-Laplacian Based Graph Neural Networks »
Guoji Fu · Peilin Zhao · Yatao Bian -
2022 Spotlight: Local Augmentation for Graph Neural Networks »
Songtao Liu · Rex (Zhitao) Ying · Hanze Dong · Lanqing Li · Tingyang Xu · Yu Rong · Peilin Zhao · Junzhou Huang · Dinghao Wu -
2022 Poster: Frustratingly Easy Transferability Estimation »
Long-Kai Huang · Junzhou Huang · Yu Rong · Qiang Yang · Ying WEI -
2022 Spotlight: Frustratingly Easy Transferability Estimation »
Long-Kai Huang · Junzhou Huang · Yu Rong · Qiang Yang · Ying WEI -
2021 Poster: Improving Generalization in Meta-learning via Task Augmentation »
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Poster: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Spotlight: Improving Generalization in Meta-learning via Task Augmentation »
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Spotlight: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Poster: Meta-learning Hyperparameter Performance Prediction with Neural Processes »
Ying WEI · Peilin Zhao · Junzhou Huang -
2021 Spotlight: Meta-learning Hyperparameter Performance Prediction with Neural Processes »
Ying WEI · Peilin Zhao · Junzhou Huang -
2020 Poster: From Sets to Multisets: Provable Variational Inference for Probabilistic Integer Submodular Models »
Aytunc Sahin · Yatao Bian · Joachim Buhmann · Andreas Krause -
2020 Poster: Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search »
Yong Guo · Yaofo Chen · Yin Zheng · Peilin Zhao · Jian Chen · Junzhou Huang · Mingkui Tan -
2019 Poster: Hierarchically Structured Meta-learning »
Huaxiu Yao · Ying WEI · Junzhou Huang · Zhenhui (Jessie) Li -
2019 Poster: RaFM: Rank-Aware Factorization Machines »
Xiaoshuang Chen · Yin Zheng · Jiaxing Wang · Wenye Ma · Junzhou Huang -
2019 Oral: Hierarchically Structured Meta-learning »
Huaxiu Yao · Ying WEI · Junzhou Huang · Zhenhui (Jessie) Li -
2019 Oral: RaFM: Rank-Aware Factorization Machines »
Xiaoshuang Chen · Yin Zheng · Jiaxing Wang · Wenye Ma · Junzhou Huang -
2019 Poster: Collaborative Channel Pruning for Deep Networks »
Hanyu Peng · Jiaxiang Wu · Shifeng Chen · Junzhou Huang -
2019 Poster: Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference »
Yatao Bian · Joachim Buhmann · Andreas Krause -
2019 Oral: Collaborative Channel Pruning for Deep Networks »
Hanyu Peng · Jiaxiang Wu · Shifeng Chen · Junzhou Huang -
2019 Oral: Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference »
Yatao Bian · Joachim Buhmann · Andreas Krause -
2018 Poster: Adversarial Learning with Local Coordinate Coding »
Jiezhang Cao · Yong Guo · Qingyao Wu · Chunhua Shen · Junzhou Huang · Mingkui Tan -
2018 Poster: Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization »
Jiaxiang Wu · Weidong Huang · Junzhou Huang · Tong Zhang -
2018 Poster: A Distributed Second-Order Algorithm You Can Trust »
Celestine Mendler-Dünner · Aurelien Lucchi · Matilde Gargiani · Yatao Bian · Thomas Hofmann · Martin Jaggi -
2018 Oral: A Distributed Second-Order Algorithm You Can Trust »
Celestine Mendler-Dünner · Aurelien Lucchi · Matilde Gargiani · Yatao Bian · Thomas Hofmann · Martin Jaggi -
2018 Oral: Adversarial Learning with Local Coordinate Coding »
Jiezhang Cao · Yong Guo · Qingyao Wu · Chunhua Shen · Junzhou Huang · Mingkui Tan -
2018 Oral: Error Compensated Quantized SGD and its Applications to Large-scale Distributed Optimization »
Jiaxiang Wu · Weidong Huang · Junzhou Huang · Tong Zhang -
2018 Poster: Transfer Learning via Learning to Transfer »
Ying WEI · Yu Zhang · Junzhou Huang · Qiang Yang -
2018 Oral: Transfer Learning via Learning to Transfer »
Ying WEI · Yu Zhang · Junzhou Huang · Qiang Yang -
2017 Poster: Guarantees for Greedy Maximization of Non-submodular Functions with Applications »
Yatao Bian · Joachim Buhmann · Andreas Krause · Sebastian Tschiatschek -
2017 Talk: Guarantees for Greedy Maximization of Non-submodular Functions with Applications »
Yatao Bian · Joachim Buhmann · Andreas Krause · Sebastian Tschiatschek