Timezone: »
Learning generalizable policies that can adapt to unseen environments remains challenging in visual Reinforcement Learning (RL). Existing approaches try to acquire a robust representation via diversifying the appearances of in-domain observations for better generalization. Limited by the specific observations of the environment, these methods ignore the possibility of exploring diverse real-world image datasets. In this paper, we investigate how a visual RL agent would benefit from the off-the-shelf visual representations. Surprisingly, we find that the early layers in an ImageNet pre-trained ResNet model could provide rather generalizable representations for visual RL. Hence, we propose Pre-trained Image Encoder for Generalizable visual reinforcement learning (PIE-G), a simple yet effective framework that can generalize to the unseen visual scenarios in a zero-shot manner. Extensive experiments are conducted on DMControl Generalization Benchmark, DMControl Manipulation Tasks, and Drawer World to verify the effectiveness of PIE-G. Empirical evidence suggests PIE-G can significantly outperforms previous state-of-the-art methods in terms of generalization performance. In particular, PIE-G boasts a 55% generalization performance gain on average in the challenging video background setting.
Author Information
Zhecheng Yuan (Tsinghua University)
Zhecheng Yuan (Tsinghua University)
Zhengrong Xue (Shanghai Jiao Tong University)
Zhengrong Xue (Shanghai Jiao Tong University)
Bo Yuan (Tsinghua University)
Bo Yuan (Tsinghua University)
Xueqian Wang (Tsinghua University, Tsinghua University)
Xueqian Wang (Tsinghua University, Tsinghua University)
Yi Wu (UC Berkeley)
Yi Wu (UC Berkeley)
Yang Gao (Tsinghua University)
Yang Gao (Tsinghua University)
Huazhe Xu (Stanford University)
Huazhe Xu (Stanford University)
More from the Same Authors
-
2021 : Disentangled Attention as Intrinsic Regularization for Bimanual Multi-Object Manipulation »
Minghao Zhang · Pingcheng Jian · Yi Wu · Harry (Huazhe) Xu · Xiaolong Wang -
2022 : Paper 12: SafeRL-Kit: Evaluating Efficient Reinforcement Learning Methods for Safe Autonomous Driving »
· Li Shen · Bo Yuan · Xueqian Wang -
2022 Poster: Fighting Fire with Fire: Avoiding DNN Shortcuts through Priming »
Chuan Wen · Jianing Qian · Jierui Lin · Jiaye Teng · Dinesh Jayaraman · Yang Gao -
2022 Poster: Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement Learning with Actor Rectification »
Ling Pan · Longbo Huang · Tengyu Ma · Huazhe Xu -
2022 Spotlight: Plan Better Amid Conservatism: Offline Multi-Agent Reinforcement Learning with Actor Rectification »
Ling Pan · Longbo Huang · Tengyu Ma · Huazhe Xu -
2022 Spotlight: Fighting Fire with Fire: Avoiding DNN Shortcuts through Priming »
Chuan Wen · Jianing Qian · Jierui Lin · Jiaye Teng · Dinesh Jayaraman · Yang Gao -
2022 Poster: Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning »
Yunfei Li · Tian Gao · Jiaqi Yang · Huazhe Xu · Yi Wu -
2022 Spotlight: Phasic Self-Imitative Reduction for Sparse-Reward Goal-Conditioned Reinforcement Learning »
Yunfei Li · Tian Gao · Jiaqi Yang · Huazhe Xu · Yi Wu -
2022 Poster: Revisiting Some Common Practices in Cooperative Multi-Agent Reinforcement Learning »
Wei Fu · Chao Yu · Zelai Xu · Jiaqi Yang · Yi Wu -
2022 Spotlight: Revisiting Some Common Practices in Cooperative Multi-Agent Reinforcement Learning »
Wei Fu · Chao Yu · Zelai Xu · Jiaqi Yang · Yi Wu -
2021 Poster: Keyframe-Focused Visual Imitation Learning »
Chuan Wen · Jierui Lin · Jianing Qian · Yang Gao · Dinesh Jayaraman -
2021 Spotlight: Keyframe-Focused Visual Imitation Learning »
Chuan Wen · Jierui Lin · Jianing Qian · Yang Gao · Dinesh Jayaraman -
2018 Poster: Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms »
Yi Wu · Siddharth Srivastava · Nicholas Hay · Simon Du · Stuart Russell -
2018 Oral: Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms »
Yi Wu · Siddharth Srivastava · Nicholas Hay · Simon Du · Stuart Russell