Timezone: »
Probabilistic Conformal Prediction Using Conditional Random Samples by Zhendong Wang, Ruijiang Gao, Mingzhang Yin, Mingyuan Zhou and David Blei
On the Utility of Prediction Sets in Human-AI Teams by Varun Babbar, Umang Bhatt and Adrian Weller
Adaptive Conformal Predictions for Time Series by Margaux Zaffran, Olivier Féron, Yannig Goude, Julie Josse and Aymeric Dieuleveut
Approximate Conditional Coverage via Neural Model Approximations by Allen Schmaltz and Danielle Rasooly
Practical Adversarial Multivalid Conformal Prediction by Osbert Bastani, Varun Gupta, Christopher Jung, Georgy Noarov, Ramya Ramalingam and Aaron Roth
VaR-Control: Bounding the Probability of High-Loss Predictions by Jake Snell, Thomas Zollo and Richard Zemel
Confident Adaptive Language Modeling by Tal Schuster and Adam Fisch
Author Information
Adrian Weller (University of Cambridge, Alan Turing Institute)

Adrian Weller is Programme Director for AI at The Alan Turing Institute, the UK national institute for data science and AI, and is a Turing AI Fellow leading work on trustworthy Machine Learning (ML). He is a Principal Research Fellow in ML at the University of Cambridge, and at the Leverhulme Centre for the Future of Intelligence where he is Programme Director for Trust and Society. His interests span AI, its commercial applications and helping to ensure beneficial outcomes for society. Previously, Adrian held senior roles in finance. He received a PhD in computer science from Columbia University, and an undergraduate degree in mathematics from Trinity College, Cambridge.
Osbert Bastani (University of Pennsylvania)
Jake Snell (University of Toronto)
Tal Schuster (Google)
Stephen Bates (University of California, Berkeley)
Zhendong Wang (University of Texas at Austin)
Margaux Zaffran (INRIA)
Danielle Rasooly (Harvard University)
Varun Babbar (Cambridge University)
More from the Same Authors
-
2021 : Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates »
· Dan Ley · Umang Bhatt · Adrian Weller -
2021 : Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates »
Dan Ley · Umang Bhatt · Adrian Weller -
2021 : On the Fairness of Causal Algorithmic Recourse »
Julius von Kügelgen · Amir-Hossein Karimi · Umang Bhatt · Isabel Valera · Adrian Weller · Bernhard Schölkopf · Amir-Hossein Karimi -
2021 : Robust Generalization of Quadratic Neural Networks via Function Identification »
Kan Xu · Hamsa Bastani · Osbert Bastani -
2021 : Towards Principled Disentanglement for Domain Generalization »
Hanlin Zhang · Yi-Fan Zhang · Weiyang Liu · Adrian Weller · Bernhard Schölkopf · Eric Xing -
2021 : Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates »
Dan Ley · Umang Bhatt · Adrian Weller -
2021 : CrossWalk: Fairness-enhanced Node Representation Learning »
Ahmad Khajehnejad · Moein Khajehnejad · Krishna Gummadi · Adrian Weller · Baharan Mirzasoleiman -
2021 : Mind the Gap: Safely Bridging Offline and Online Reinforcement Learning »
Wanqiao Xu · Kan Xu · Hamsa Bastani · Osbert Bastani -
2021 : Mind the Gap: Safely Bridging Offline and Online Reinforcement Learning »
Wanqiao Xu · Kan Xu · Hamsa Bastani · Osbert Bastani -
2021 : Improving Human Decision-Making with Machine Learning »
Hamsa Bastani · Osbert Bastani · Wichinpong Sinchaisri -
2021 : Improving Human Decision-Making with Machine Learning »
Hamsa Bastani · Osbert Bastani · Wichinpong Sinchaisri -
2022 : Perspectives on Incorporating Expert Feedback into Model Updates »
Valerie Chen · Umang Bhatt · Hoda Heidari · Adrian Weller · Ameet Talwalkar -
2023 : Algorithms for Optimal Adaptation of Diffusion Models to Reward Functions »
Krishnamurthy Dvijotham · Shayegan Omidshafiei · Kimin Lee · Katie Collins · Deepak Ramachandran · Adrian Weller · Mohammad Ghavamzadeh · Milad Nasresfahani · Ying Fan · Jeremiah Liu -
2023 : TRAC: Trustworthy Retrieval Augmented Chatbot »
Shuo Li · Sangdon Park · Insup Lee · Osbert Bastani -
2023 : TRAC: Trustworthy Retrieval Augmented Chatbot »
Shuo Li · Sangdon Park · Insup Lee · Osbert Bastani -
2023 : The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling probabilistic social inferences from linguistic inputs »
Lance Ying · Katie Collins · Megan Wei · Cedegao Zhang · Tan Zhi-Xuan · Adrian Weller · Josh Tenenbaum · Catherine Wong -
2023 Oral: Simplex Random Features »
Isaac Reid · Krzysztof Choromanski · Valerii Likhosherstov · Adrian Weller -
2023 Poster: Efficient Graph Field Integrators Meet Point Clouds »
Krzysztof Choromanski · Arijit Sehanobish · Han Lin · YUNFAN ZHAO · Eli Berger · Tetiana Parshakova · Qingkai Pan · David Watkins · Tianyi Zhang · Valerii Likhosherstov · Somnath Basu Roy Chowdhury · Kumar Avinava Dubey · Deepali Jain · Tamas Sarlos · Snigdha Chaturvedi · Adrian Weller -
2023 Poster: Simplex Random Features »
Isaac Reid · Krzysztof Choromanski · Valerii Likhosherstov · Adrian Weller -
2023 Poster: Conformal Prediction with Missing Values »
Margaux Zaffran · Aymeric Dieuleveut · Julie Josse · Yaniv Romano -
2023 Poster: PAC Prediction Sets for Large Language Models of Code »
Adam Khakhar · Stephen Mell · Osbert Bastani -
2023 Poster: LIV: Language-Image Representations and Rewards for Robotic Control »
Yecheng Jason Ma · Vikash Kumar · Amy Zhang · Osbert Bastani · Dinesh Jayaraman -
2023 Poster: Is Learning Summary Statistics Necessary for Likelihood-free Inference? »
Yanzhi Chen · Michael Gutmann · Adrian Weller -
2023 Poster: Robust Subtask Learning for Compositional Generalization »
Kishor Jothimurugan · Steve Hsu · Osbert Bastani · Rajeev Alur -
2022 Workshop: Workshop on Distribution-Free Uncertainty Quantification »
Anastasios Angelopoulos · Stephen Bates · Sharon Li · Ryan Tibshirani · Aaditya Ramdas · Stephen Bates -
2022 Workshop: Workshop on Human-Machine Collaboration and Teaming »
Umang Bhatt · Katie Collins · Maria De-Arteaga · Bradley Love · Adrian Weller -
2022 : Confident Adaptive Language Modeling »
Tal Schuster · Adam Fisch · Jai Gupta · Mostafa Dehghani · Dara Bahri · Vinh Tran · Yi Tay · Don Metzler -
2022 Poster: From block-Toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked Transformers »
Krzysztof Choromanski · Han Lin · Haoxian Chen · Tianyi Zhang · Arijit Sehanobish · Valerii Likhosherstov · Jack Parker-Holder · Tamas Sarlos · Adrian Weller · Thomas Weingarten -
2022 Poster: Versatile Offline Imitation from Observations and Examples via Regularized State-Occupancy Matching »
Yecheng Jason Ma · Andrew Shen · Dinesh Jayaraman · Osbert Bastani -
2022 Poster: Adaptive Conformal Predictions for Time Series »
Margaux Zaffran · Olivier FERON · Yannig Goude · julie Josse · Aymeric Dieuleveut -
2022 Poster: Measuring Representational Robustness of Neural Networks Through Shared Invariances »
Vedant Nanda · Till Speicher · Camila Kolling · John P Dickerson · Krishna Gummadi · Adrian Weller -
2022 Oral: Measuring Representational Robustness of Neural Networks Through Shared Invariances »
Vedant Nanda · Till Speicher · Camila Kolling · John P Dickerson · Krishna Gummadi · Adrian Weller -
2022 Spotlight: Adaptive Conformal Predictions for Time Series »
Margaux Zaffran · Olivier FERON · Yannig Goude · julie Josse · Aymeric Dieuleveut -
2022 Spotlight: Versatile Offline Imitation from Observations and Examples via Regularized State-Occupancy Matching »
Yecheng Jason Ma · Andrew Shen · Dinesh Jayaraman · Osbert Bastani -
2022 Spotlight: From block-Toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked Transformers »
Krzysztof Choromanski · Han Lin · Haoxian Chen · Tianyi Zhang · Arijit Sehanobish · Valerii Likhosherstov · Jack Parker-Holder · Tamas Sarlos · Adrian Weller · Thomas Weingarten -
2022 Poster: Understanding Robust Generalization in Learning Regular Languages »
Soham Dan · Osbert Bastani · Dan Roth -
2022 Poster: Conformal Prediction Sets with Limited False Positives »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2022 Spotlight: Conformal Prediction Sets with Limited False Positives »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2022 Spotlight: Understanding Robust Generalization in Learning Regular Languages »
Soham Dan · Osbert Bastani · Dan Roth -
2022 Poster: Sequential Covariate Shift Detection Using Classifier Two-Sample Tests »
Sooyong Jang · Sangdon Park · Insup Lee · Osbert Bastani -
2022 Poster: Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging »
Anastasios Angelopoulos · Amit Pal Kohli · Stephen Bates · Michael Jordan · Jitendra Malik · Thayer Alshaabi · Srigokul Upadhyayula · Yaniv Romano -
2022 Spotlight: Image-to-Image Regression with Distribution-Free Uncertainty Quantification and Applications in Imaging »
Anastasios Angelopoulos · Amit Pal Kohli · Stephen Bates · Michael Jordan · Jitendra Malik · Thayer Alshaabi · Srigokul Upadhyayula · Yaniv Romano -
2022 Spotlight: Sequential Covariate Shift Detection Using Classifier Two-Sample Tests »
Sooyong Jang · Sangdon Park · Insup Lee · Osbert Bastani -
2021 : Poster Session #2 »
Stephen Bates -
2021 Workshop: Workshop on Distribution-Free Uncertainty Quantification »
Anastasios Angelopoulos · Stephen Bates · Sharon Li · Aaditya Ramdas · Ryan Tibshirani -
2021 Poster: Group-Sparse Matrix Factorization for Transfer Learning of Word Embeddings »
Kan Xu · Xuanyi Zhao · Hamsa Bastani · Osbert Bastani -
2021 Poster: Debiasing a First-order Heuristic for Approximate Bi-level Optimization »
Valerii Likhosherstov · Xingyou Song · Krzysztof Choromanski · Jared Quincy Davis · Adrian Weller -
2021 Spotlight: Group-Sparse Matrix Factorization for Transfer Learning of Word Embeddings »
Kan Xu · Xuanyi Zhao · Hamsa Bastani · Osbert Bastani -
2021 Spotlight: Debiasing a First-order Heuristic for Approximate Bi-level Optimization »
Valerii Likhosherstov · Xingyou Song · Krzysztof Choromanski · Jared Quincy Davis · Adrian Weller -
2020 Workshop: 5th ICML Workshop on Human Interpretability in Machine Learning (WHI) »
Adrian Weller · Alice Xiang · Amit Dhurandhar · Been Kim · Dennis Wei · Kush Varshney · Umang Bhatt -
2020 Poster: Stochastic Flows and Geometric Optimization on the Orthogonal Group »
Krzysztof Choromanski · David Cheikhi · Jared Quincy Davis · Valerii Likhosherstov · Achille Nazaret · Achraf Bahamou · Xingyou Song · Mrugank Akarte · Jack Parker-Holder · Jacob Bergquist · Yuan Gao · Aldo Pacchiano · Tamas Sarlos · Adrian Weller · Vikas Sindhwani -
2020 Poster: Robust and Stable Black Box Explanations »
Hima Lakkaraju · Nino Arsov · Osbert Bastani -
2020 Poster: Thompson Sampling via Local Uncertainty »
Zhendong Wang · Mingyuan Zhou -
2020 Poster: Generating Programmatic Referring Expressions via Program Synthesis »
Jiani Huang · Calvin Smith · Osbert Bastani · Rishabh Singh · Aws Albarghouthi · Mayur Naik -
2019 Workshop: Human In the Loop Learning (HILL) »
Xin Wang · Xin Wang · Fisher Yu · Shanghang Zhang · Joseph Gonzalez · Yangqing Jia · Sarah Bird · Kush Varshney · Been Kim · Adrian Weller -
2019 Poster: Unifying Orthogonal Monte Carlo Methods »
Krzysztof Choromanski · Mark Rowland · Wenyu Chen · Adrian Weller -
2019 Oral: Unifying Orthogonal Monte Carlo Methods »
Krzysztof Choromanski · Mark Rowland · Wenyu Chen · Adrian Weller -
2019 Poster: Learning Neurosymbolic Generative Models via Program Synthesis »
Halley R Young · Osbert Bastani · Mayur Naik -
2019 Oral: Learning Neurosymbolic Generative Models via Program Synthesis »
Halley R Young · Osbert Bastani · Mayur Naik -
2019 Poster: TibGM: A Transferable and Information-Based Graphical Model Approach for Reinforcement Learning »
Tameem Adel · Adrian Weller -
2019 Oral: TibGM: A Transferable and Information-Based Graphical Model Approach for Reinforcement Learning »
Tameem Adel · Adrian Weller -
2018 Poster: Blind Justice: Fairness with Encrypted Sensitive Attributes »
Niki Kilbertus · Adria Gascon · Matt Kusner · Michael Veale · Krishna Gummadi · Adrian Weller -
2018 Oral: Blind Justice: Fairness with Encrypted Sensitive Attributes »
Niki Kilbertus · Adria Gascon · Matt Kusner · Michael Veale · Krishna Gummadi · Adrian Weller -
2018 Poster: Bucket Renormalization for Approximate Inference »
Sungsoo Ahn · Michael Chertkov · Adrian Weller · Jinwoo Shin -
2018 Oral: Bucket Renormalization for Approximate Inference »
Sungsoo Ahn · Michael Chertkov · Adrian Weller · Jinwoo Shin -
2018 Poster: Structured Evolution with Compact Architectures for Scalable Policy Optimization »
Krzysztof Choromanski · Mark Rowland · Vikas Sindhwani · Richard E Turner · Adrian Weller -
2018 Poster: Discovering Interpretable Representations for Both Deep Generative and Discriminative Models »
Tameem Adel · Zoubin Ghahramani · Adrian Weller -
2018 Oral: Discovering Interpretable Representations for Both Deep Generative and Discriminative Models »
Tameem Adel · Zoubin Ghahramani · Adrian Weller -
2018 Oral: Structured Evolution with Compact Architectures for Scalable Policy Optimization »
Krzysztof Choromanski · Mark Rowland · Vikas Sindhwani · Richard E Turner · Adrian Weller -
2017 Workshop: Reliable Machine Learning in the Wild »
Dylan Hadfield-Menell · Jacob Steinhardt · Adrian Weller · Smitha Milli -
2017 : A. Weller, "Challenges for Transparency" »
Adrian Weller -
2017 Workshop: Workshop on Human Interpretability in Machine Learning (WHI) »
Kush Varshney · Adrian Weller · Been Kim · Dmitry Malioutov -
2017 Poster: Lost Relatives of the Gumbel Trick »
Matej Balog · Nilesh Tripuraneni · Zoubin Ghahramani · Adrian Weller -
2017 Talk: Lost Relatives of the Gumbel Trick »
Matej Balog · Nilesh Tripuraneni · Zoubin Ghahramani · Adrian Weller