Timezone: »

 
Distributionally Adaptive Meta Reinforcement Learning
Anurag Ajay · Dibya Ghosh · Sergey Levine · Pulkit Agrawal · Abhishek Gupta

Meta-reinforcement learning algorithms provide a data-driven way to acquire learning algorithms that quickly adapt to many tasks with varying rewards or dynamics functions. However, learned meta-policies are often effective only on the exact task distribution on which the policy was trained, and struggle in the presence of distribution shift of test-time rewards or transition dynamics. In this work, we develop a framework for meta-RL algorithms that are able to behave appropriately under test-time distribution shifts in the space of tasks. Our framework centers on an adaptive approach to distributional robustness, in which we train a population of meta-agents to be robust to varying levels of distribution shift, so that when evaluated on a (potentially shifted) test-time distribution of tasks, we can adaptively choose the most appropriate meta-agent to follow. We formally show how this framework allows for improved regret under distribution shift, and empirically show its efficacy on simulated robotics problems under a wide range of distribution shifts.

Author Information

Anurag Ajay (MIT)
Dibya Ghosh (UC Berkeley)
Sergey Levine (UC Berkeley)
Sergey Levine

Sergey Levine received a BS and MS in Computer Science from Stanford University in 2009, and a Ph.D. in Computer Science from Stanford University in 2014. He joined the faculty of the Department of Electrical Engineering and Computer Sciences at UC Berkeley in fall 2016. His work focuses on machine learning for decision making and control, with an emphasis on deep learning and reinforcement learning algorithms. Applications of his work include autonomous robots and vehicles, as well as computer vision and graphics. His research includes developing algorithms for end-to-end training of deep neural network policies that combine perception and control, scalable algorithms for inverse reinforcement learning, deep reinforcement learning algorithms, and more.

Pulkit Agrawal (MIT)
Abhishek Gupta (UC Berkeley)

More from the Same Authors