Timezone: »
Ensembles of neural networks have been shown to achieve state-of-the-art performance on a variety of ML benchmark tasks, and particularly on tasks evaluating robustness to dataset shift. Conventional wisdom attributes this success to the diversity of the neural networks within the ensemble: the more diverse the predictions, the more robust the aggregated output should be. Under the mean squared error loss, the influence of ensemble diversity is apparent from the bias-variance decomposition, which separates the ensemble loss into two terms: the first evaluates the individual model quality of ensemble members, and the second the overall ensemble diversity. Classification tasks, however, typically rely upon KL divergence-based losses with less tractable bias-variance decompositions, and thus several ad hoc metrics have been proposed as measures of classifier diversity. In this work, we a) show empirically that various metrics of ensemble diversity indeed correlate with improved performance on classification tasks, and b) leverage a generalization of the bias-variance decomposition to propose a theoretically-motivated diversity metric with a strong correlation to ensemble loss. On out-of-distribution tasks, albeit to a lesser degree, diversity metrics also correlate with ensemble loss.
Author Information
Zelda Mariet (Google Inc.)
More from the Same Authors
-
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · Jie Ren · Joost van Amersfoort · Kehang Han · E. Kelly Buchanan · Kevin Murphy · Mark Collier · Mike Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2020 : Closing remarks »
Zelda Mariet · Michal Derezinski · Mike Gartrell -
2020 Workshop: Negative Dependence and Submodularity: Theory and Applications in Machine Learning »
Zelda Mariet · Michal Derezinski · Mike Gartrell -
2020 : Opening remarks »
Zelda Mariet · Mike Gartrell · Michal Derezinski -
2020 Poster: Population-Based Black-Box Optimization for Biological Sequence Design »
Christof Angermueller · David Belanger · Andreea Gane · Zelda Mariet · David Dohan · Kevin Murphy · Lucy Colwell · D. Sculley