Timezone: »
Understanding the performance of machine learning models across diverse data distributions is critically important for reliable applications. Recent empirically works find that there is a strong linear relationship between in-distribution (ID) and out-of-distribution (OOD) performance, but we show that this is not necessarily true if there are subpopulation shifts. In this paper, we empirically show that out-of-distribution performance often has nonlinear correlation with in-distribution performance under subpopulation shifts. To understand this phenomenon, we decompose the model's performance into performance on each subpopulation. We show that there is a "moon shape" correlation (parabolic uptrend curve) between the test performance on the majority subpopulation and the minority subpopulation. This nonlinear correlations hold across model architectures, training durations and hyperparameters, and the imbalance between subpopulations. Moreover, we show that the nonlinearity increases in the presence of spurious correlations in the training data. We provide complementary theoretical and experimental analyses for this interesting phenomenon of nonlinear performance correlation across subpopulations. Finally, we discuss the implications of our findings for ML reliability and fairness.
Author Information
Weixin Liang (Stanford University)
Yining Mao (Stanford University)
Yongchan Kwon (Stanford University)
Xinyu Yang (Zhejiang University)
James Zou (Stanford University)
More from the Same Authors
-
2021 : Meaningfully Explaining a Model's Mistakes »
· Abubakar Abid · James Zou -
2021 : Meaningfully Explaining a Model's Mistakes »
Abubakar Abid · James Zou -
2021 : MetaDataset: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts »
Weixin Liang · James Zou · Weixin Liang -
2021 : Have the Cake and Eat It Too? Higher Accuracy and Less Expense when Using Multi-label ML APIs Online »
Lingjiao Chen · James Zou · Matei Zaharia -
2021 : Machine Learning API Shift Assessments: Change is Coming! »
Lingjiao Chen · James Zou · Matei Zaharia -
2021 : Do Humans Trust Advice More if it Comes from AI? An Analysis of Human-AI Interactions »
Kailas Vodrahalli · James Zou -
2022 : On the nonlinear correlation of ML performance across data subpopulations »
Weixin Liang · Yining Mao · Yongchan Kwon · Xinyu Yang · James Zou -
2022 : MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts »
Weixin Liang · Xinyu Yang · James Zou -
2022 : Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning »
Weixin Liang · Yuhui Zhang · Yongchan Kwon · Serena Yeung · James Zou -
2023 : Improve Model Inference Cost with Image Gridding »
Shreyas Krishnaswamy · Lisa Dunlap · Lingjiao Chen · Matei Zaharia · James Zou · Joseph Gonzalez -
2023 : Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value »
Yongchan Kwon · James Zou -
2023 Poster: Accuracy on the Curve: On the Nonlinear Correlation of ML Performance Between Data Subpopulations »
Weixin Liang · Yining Mao · Yongchan Kwon · Xinyu Yang · James Zou -
2022 : GSCLIP : A Framework for Explaining Distribution Shifts in Natural Language »
Zhiying Zhu · Weixin Liang · James Zou -
2022 : Evaluation of ML in Health/Science »
James Zou -
2022 : Data Sculpting: Interpretable Algorithm for End-to-End Cohort Selection »
Ruishan Liu · James Zou -
2022 : Data Budgeting for Machine Learning »
Weixin Liang · James Zou -
2022 : Contributed Talk 2: MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts »
Weixin Liang · Xinyu Yang · James Zou -
2022 Poster: When and How Mixup Improves Calibration »
Linjun Zhang · Zhun Deng · Kenji Kawaguchi · James Zou -
2022 Poster: Efficient Online ML API Selection for Multi-Label Classification Tasks »
Lingjiao Chen · Matei Zaharia · James Zou -
2022 Poster: Improving Out-of-Distribution Robustness via Selective Augmentation »
Huaxiu Yao · Yu Wang · Sai Li · Linjun Zhang · Weixin Liang · James Zou · Chelsea Finn -
2022 Spotlight: Efficient Online ML API Selection for Multi-Label Classification Tasks »
Lingjiao Chen · Matei Zaharia · James Zou -
2022 Spotlight: Improving Out-of-Distribution Robustness via Selective Augmentation »
Huaxiu Yao · Yu Wang · Sai Li · Linjun Zhang · Weixin Liang · James Zou · Chelsea Finn -
2022 Spotlight: When and How Mixup Improves Calibration »
Linjun Zhang · Zhun Deng · Kenji Kawaguchi · James Zou -
2021 : Poster Session »
Kishor Datta Gupta · Sebastian Schelter · Till Döhmen · Tony Ginart · Lingjiao Chen · Yongchan Kwon -
2021 : Competition over data: when does data purchase benefit users? »
Yongchan Kwon -
2021 Poster: Improving Generalization in Meta-learning via Task Augmentation »
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Spotlight: Improving Generalization in Meta-learning via Task Augmentation »
Huaxiu Yao · Long-Kai Huang · Linjun Zhang · Ying WEI · Li Tian · James Zou · Junzhou Huang · Zhenhui (Jessie) Li -
2021 Poster: How to Learn when Data Reacts to Your Model: Performative Gradient Descent »
Zachary Izzo · Lexing Ying · James Zou -
2021 Spotlight: How to Learn when Data Reacts to Your Model: Performative Gradient Descent »
Zachary Izzo · Lexing Ying · James Zou -
2020 Poster: A Distributional Framework For Data Valuation »
Amirata Ghorbani · Michael Kim · James Zou -
2020 Poster: Principled learning method for Wasserstein distributionally robust optimization with local perturbations »
Yongchan Kwon · Wonyoung Kim · Joong-Ho (Johann) Won · Myunghee Cho Paik -
2019 Poster: Concrete Autoencoders: Differentiable Feature Selection and Reconstruction »
Muhammed Fatih Balın · Abubakar Abid · James Zou -
2019 Poster: Discovering Conditionally Salient Features with Statistical Guarantees »
Jaime Roquero Gimenez · James Zou -
2019 Oral: Discovering Conditionally Salient Features with Statistical Guarantees »
Jaime Roquero Gimenez · James Zou -
2019 Oral: Concrete Autoencoders: Differentiable Feature Selection and Reconstruction »
Muhammed Fatih Balın · Abubakar Abid · James Zou -
2019 Poster: Data Shapley: Equitable Valuation of Data for Machine Learning »
Amirata Ghorbani · James Zou -
2019 Oral: Data Shapley: Equitable Valuation of Data for Machine Learning »
Amirata Ghorbani · James Zou -
2018 Poster: CoVeR: Learning Covariate-Specific Vector Representations with Tensor Decompositions »
Kevin Tian · Teng Zhang · James Zou -
2018 Oral: CoVeR: Learning Covariate-Specific Vector Representations with Tensor Decompositions »
Kevin Tian · Teng Zhang · James Zou