Timezone: »
We introduce GAUCHE, a library for GAUssian processes in CHEmistry. Gaussian processes have long been a cornerstone of probabilistic machine learning, affording particular advantages for uncertainty quantification and Bayesian optimisation. Extending Gaussian processes to chemical representations however is nontrivial, necessitating kernels defined over structured inputs such as graphs, strings and bit vectors. By defining such kernels in GAUCHE, we seek to open the door to powerful tools for uncertainty quantification and Bayesian optimisation in chemistry. Motivated by scenarios frequently encountered in experimental chemistry, we showcase applications for GAUCHE in molecule discovery, chemical reaction optimisation and protein engineering.
Author Information
Ryan-Rhys Griffiths (University of Cambridge)
Leo Klarner (University of Oxford)
Henry Moss (Secondmind.ai)

Research Scientist at Secondmind.ai (formerly Prowler.io). Interested in: 1. Bayesian optimisation 2. Gaussian Processes 3. Information Theory 4. Experimental Design
Aditya Ravuri (University of Cambridge)
Sang Truong (Stanford University)
Yuanqi Du (Cornell University)
Arian Jamasb (University of Cambridge)
Julius Schwartz
Austin Tripp (University of Cambridge)
Bojana Ranković
Philippe Schwaller (Swiss Federal Institute of Technology Lausanne)
Gregory Kell
Anthony Bourached (University College London)
Alexander Chan (University of Cambridge)
Jacob Moss (University of Cambridge)
Chengzhi Guo (University of Cambridge)
Alpha Lee
Jian Tang (Mila)
More from the Same Authors
-
2020 : (#95 / Sess. 2) Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Protein Structures »
Arian Jamasb -
2021 : Data Considerations in Graph Representation Learning for Supply Chain Networks »
Edward Kosasih · Ryan-Rhys Griffiths · Alexandra Brintrup · Ajmal Aziz -
2022 : Graphein - a Python Library for Geometric Deep Learning and Network Analysis on Biomolecular Structures and Interaction Networks »
Arian Jamasb · Ramon Viñas Torné · Eric Ma · Yuanqi Du · Charles Harris · Kexin Huang · Dominic Hall · Pietro Lió · Tom Blundell -
2022 : Path Integral Stochastic Optimal Control for Sampling Transition Paths »
Lars Holdijk · Yuanqi Du · Priyank Jaini · Ferry Hooft · Bernd Ensing · Max Welling -
2022 : Evaluating Self-Supervised Learned Molecular Graphs »
Hanchen Wang · Shengchao Liu · Jean Kaddour · Qi Liu · Jian Tang · Matt Kusner · Joan Lasenby -
2022 : Featurizations Matter: A Multiview Contrastive Learning Approach to Molecular Pretraining »
Yanqiao Zhu · Dingshuo Chen · Yuanqi Du · Yingze Wang · Qiang Liu · Shu Wu -
2022 : Pre-training Graph Neural Networks for Molecular Representations: Retrospect and Prospect »
Jun Xia · Yanqiao Zhu · Yuanqi Du · Stan Z. Li -
2022 : Quantum Neural Architecture Search with Quantum Circuits Metric and Bayesian Optimization »
Trong Duong · Sang Truong · Minh Pham · Bao Bach · June-Koo Rhee -
2022 : Bias in the Benchmark: Systematic experimental errors in bioactivity databases confound multi-task and meta-learning algorithms »
Leo Klarner · Michael Reutlinger · Torsten Schindler · Charlotte Deane · Garrett Morris -
2022 : Flaky Performances when Pre-Training on Relational Databases with a Plan for Future Characterization Efforts »
Shengchao Liu · David Vazquez · Jian Tang · Pierre-André Noël -
2022 : Protein Representation Learning by Geometric Structure Pretraining »
Zuobai Zhang · Zuobai Zhang · Minghao Xu · Minghao Xu · Arian Jamasb · Arian Jamasb · Vijil Chenthamarakshan · Vijil Chenthamarakshan · Aurelie Lozano · Payel Das · Payel Das · Jian Tang · Jian Tang -
2022 : Evaluating Self-Supervised Learned Molecular Graphs »
Hanchen Wang · Hanchen Wang · Shengchao Liu · Shengchao Liu · Jean Kaddour · Jean Kaddour · Qi Liu · Qi Liu · Jian Tang · Jian Tang · Matt Kusner · Matt Kusner · Joan Lasenby · Joan Lasenby -
2023 Poster: Retrosynthetic Planning with Dual Value Networks »
Guoqing Liu · Di Xue · Shufang Xie · Yingce Xia · Austin Tripp · Krzysztof Maziarz · Marwin Segler · Tao Qin · Zongzhang Zhang · Tie-Yan Liu -
2023 Poster: Weighted Sampling without Replacement for Deep Top-$k$ Classification »
Dieqiao Feng · Yuanqi Du · Carla Gomes · Bart Selman -
2023 Poster: A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining »
Shengchao Liu · weitao du · Zhiming Ma · Hongyu Guo · Jian Tang -
2023 Poster: A Flexible Diffusion Model »
weitao du · He Zhang · Tao Yang · Yuanqi Du -
2023 Poster: FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning »
Songtao Liu · Zhengkai Tu · Minkai Xu · Zuobai Zhang · Lu Lin · Rex Ying · Jian Tang · Peilin Zhao · Dinghao Wu -
2023 Poster: Drug Discovery under Covariate Shift with Domain-Informed Prior Distributions over Functions »
Leo Klarner · Tim G. J. Rudner · Michael Reutlinger · Torsten Schindler · Garrett Morris · Charlotte Deane · Yee-Whye Teh -
2023 Poster: ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts »
Minghao Xu · Xinyu Yuan · Santiago Miret · Jian Tang -
2023 Oral: ProtST: Multi-Modality Learning of Protein Sequences and Biomedical Texts »
Minghao Xu · Xinyu Yuan · Santiago Miret · Jian Tang -
2023 Workshop: Structured Probabilistic Inference and Generative Modeling »
Dinghuai Zhang · Yuanqi Du · Chenlin Meng · Shawn Tan · Yingzhen Li · Max Welling · Yoshua Bengio -
2022 Workshop: The First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward »
Huaxiu Yao · Hugo Larochelle · Percy Liang · Colin Raffel · Jian Tang · Ying WEI · Saining Xie · Eric Xing · Chelsea Finn -
2022 Poster: Generative Coarse-Graining of Molecular Conformations »
Wujie Wang · Minkai Xu · Chen Cai · Benjamin Kurt Miller · Tess Smidt · Yusu Wang · Jian Tang · Rafael Gomez-Bombarelli -
2022 Spotlight: Generative Coarse-Graining of Molecular Conformations »
Wujie Wang · Minkai Xu · Chen Cai · Benjamin Kurt Miller · Tess Smidt · Yusu Wang · Jian Tang · Rafael Gomez-Bombarelli -
2020 Poster: Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift »
Alexander Chan · Ahmed Alaa · Zhaozhi Qian · Mihaela van der Schaar