Timezone: »
In recent years, there has been a growing interest in using machine learning to overcome the high cost of numerical simulation, with some learned models achieving impressive speed-ups over classical solvers whilst maintaining accuracy. However, these methods are usually tested at low-resolution settings, and it remains to be seen whether they can scale to the costly high-resolution simulations that we ultimately want to tackle.In this work, we propose two complementary approaches to improve the framework from MeshGraphNets, which demonstrated accurate predictions in a broad range of physical systems. MeshGraphNets relies on a message passing graph neural network to propagate information, and this structure becomes a limiting factor for high-resolution simulations, as equally distant points in space become further apart in graph space. First, we demonstrate that it is possible to learn accurate surrogate dynamics of a high-resolution system on a much coarser mesh, both removing the message passing bottleneck and improving performance; and second, we introduce a hierarchical approach (MultiScale MeshGraphNets) which passes messages on two different resolutions (fine and coarse), significantly improving the accuracy of MeshGraphNets while requiring less computational resources.
Author Information
Meire Fortunato (DEEPMIND)
Tobias Pfaff (DeepMind)
Peter Wirnsberger (DeepMind)
Alexander Pritzel (Deepmind)
Peter Battaglia (DeepMind)
More from the Same Authors
-
2023 : Diffusion Generative Inverse Design »
Marin Vlastelica · Tatiana Lopez-Guevara · Kelsey Allen · Peter Battaglia · Arnaud Doucet · Kimberly Stachenfeld -
2022 Poster: Constraint-based graph network simulator »
Yulia Rubanova · Alvaro Sanchez-Gonzalez · Tobias Pfaff · Peter Battaglia -
2022 Spotlight: Constraint-based graph network simulator »
Yulia Rubanova · Alvaro Sanchez-Gonzalez · Tobias Pfaff · Peter Battaglia -
2021 Poster: Generating images with sparse representations »
Charlie Nash · Jacob Menick · Sander Dieleman · Peter Battaglia -
2021 Oral: Generating images with sparse representations »
Charlie Nash · Jacob Menick · Sander Dieleman · Peter Battaglia -
2020 : Invited Talk: Peter Battaglia (Q&A) »
Peter Battaglia -
2020 : Invited Talk: Peter Battaglia »
Peter Battaglia -
2020 Poster: PolyGen: An Autoregressive Generative Model of 3D Meshes »
Charlie Nash · Yaroslav Ganin · S. M. Ali Eslami · Peter Battaglia -
2020 Poster: Learning to Simulate Complex Physics with Graph Networks »
Alvaro Sanchez-Gonzalez · Jonathan Godwin · Tobias Pfaff · Rex (Zhitao) Ying · Jure Leskovec · Peter Battaglia -
2020 : DeepMind: DeepMind at WiML Un-workshop »
Meire Fortunato -
2019 Poster: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Poster: Structured agents for physical construction »
Victor Bapst · Alvaro Sanchez-Gonzalez · Carl Doersch · Kimberly Stachenfeld · Pushmeet Kohli · Peter Battaglia · Jessica Hamrick -
2019 Oral: CompILE: Compositional Imitation Learning and Execution »
Thomas Kipf · Yujia Li · Hanjun Dai · Vinicius Zambaldi · Alvaro Sanchez-Gonzalez · Edward Grefenstette · Pushmeet Kohli · Peter Battaglia -
2019 Oral: Structured agents for physical construction »
Victor Bapst · Alvaro Sanchez-Gonzalez · Carl Doersch · Kimberly Stachenfeld · Pushmeet Kohli · Peter Battaglia · Jessica Hamrick -
2018 Poster: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2018 Poster: Graph Networks as Learnable Physics Engines for Inference and Control »
Alvaro Sanchez-Gonzalez · Nicolas Heess · Jost Springenberg · Josh Merel · Martin Riedmiller · Raia Hadsell · Peter Battaglia -
2018 Oral: Generative Temporal Models with Spatial Memory for Partially Observed Environments »
Marco Fraccaro · Danilo J. Rezende · Yori Zwols · Alexander Pritzel · S. M. Ali Eslami · Fabio Viola -
2018 Oral: Graph Networks as Learnable Physics Engines for Inference and Control »
Alvaro Sanchez-Gonzalez · Nicolas Heess · Jost Springenberg · Josh Merel · Martin Riedmiller · Raia Hadsell · Peter Battaglia -
2017 Poster: Neural Episodic Control »
Alexander Pritzel · Benigno Uria · Srinivasan Sriram · AdriĆ Puigdomenech Badia · Oriol Vinyals · Demis Hassabis · Daan Wierstra · Charles Blundell -
2017 Talk: Neural Episodic Control »
Alexander Pritzel · Benigno Uria · Srinivasan Sriram · AdriĆ Puigdomenech Badia · Oriol Vinyals · Demis Hassabis · Daan Wierstra · Charles Blundell -
2017 Poster: DARLA: Improving Zero-Shot Transfer in Reinforcement Learning »
Irina Higgins · Arka Pal · Andrei A Rusu · Loic Matthey · Christopher Burgess · Alexander Pritzel · Matthew Botvinick · Charles Blundell · Alexander Lerchner -
2017 Talk: DARLA: Improving Zero-Shot Transfer in Reinforcement Learning »
Irina Higgins · Arka Pal · Andrei A Rusu · Loic Matthey · Christopher Burgess · Alexander Pritzel · Matthew Botvinick · Charles Blundell · Alexander Lerchner