Timezone: »
Many existing datasets for robustness and adaptation evaluation are limited to static distribution shifts. We propose a well-calibrated dataset for continuously changing image corruptions on ImageNet scale. Our benchmark builds on the established common corruptions of ImageNet-C and extends them by applying two corruptions at the same time with finer-grained severities to allow for smooth transitions between corruptions. The benchmark contains random walks through different corruption types with different controlled difficulties and speeds of domain shift. Our dataset can be used to benchmark test-time and domain adaptation algorithms in challenging settings that are closer to real-world applications than typically used static adaptation benchmarks.
Author Information
Ori Press
Steffen Schneider (University of Tuebingen / EPFL / ELLIS)
Matthias Kuemmerer (Center for Integrative Neuroscience, University of Tübingen)
Matthias Bethge (University of Tübingen)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : CCC: Continuously Changing Corruptions »
Dates n/a. Room
More from the Same Authors
-
2022 : ImageNet-D: A new challenging robustness dataset inspired by domain adaptation »
Evgenia Rusak · Steffen Schneider · Peter V Gehler · Oliver Bringmann · Wieland Brendel · Matthias Bethge -
2022 : 2 CENTs on continual adaptation: replay & parameter buffers stabilize entropy minimization »
Ori Press · Steffen Schneider · Matthias Kuemmerer · Matthias Bethge -
2022 : Closing remarks »
Evgenia Rusak · Roland S. Zimmermann · Julian Bitterwolf · Steffen Schneider -
2022 : Panel discussion »
Steffen Schneider · Aleksander Madry · Alexei Efros · Chelsea Finn · Soheil Feizi -
2022 : ImageNet-D: A new challenging robustness dataset inspired by domain adaptation »
Evgenia Rusak · Steffen Schneider · Peter V Gehler · Oliver Bringmann · Wieland Brendel · Matthias Bethge -
2022 : Introduction and opening remarks »
Julian Bitterwolf · Roland S. Zimmermann · Steffen Schneider · Evgenia Rusak -
2018 Poster: One-Shot Segmentation in Clutter »
Claudio Michaelis · Matthias Bethge · Alexander Ecker -
2018 Oral: One-Shot Segmentation in Clutter »
Claudio Michaelis · Matthias Bethge · Alexander Ecker