Timezone: »
Understanding the performance of machine learning models across diverse data distributions is critically important for reliable applications. Motivated by this, there is a growing focus on curating benchmark datasets that capture distribution shifts. In this work, we present MetaShift---a collection of 12,868 sets of natural images across 410 classes---to address this challenge. We leverage the natural heterogeneity of Visual Genome and its annotations to construct MetaShift. The key construction idea is to cluster images using its metadata, which provides context for each image (e.g. cats with cars or cats in bathroom) that represent distinct data distributions. MetaShift has two important benefits: first, it contains orders of magnitude more natural data shifts than previously available. Second, it provides explicit explanations of what is unique about each of its data sets and a distance score that measures the amount of distribution shift between any two of its data sets. Importantly, to support evaluating ImageNet trained models on MetaShift, we match MetaShift with ImageNet hierarchy. The matched version covers 867 out of 1,000 classes in ImageNet-1k. Each class in the ImageNet-matched Metashift contains 19.3 subsets capturing images in different contexts.
Author Information
Weixin Liang (Stanford University)
Xinyu Yang (Zhejiang University)
James Zou (Stanford)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 : Contributed Talk 2: MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts »
Fri. Jul 22nd 02:35 -- 02:50 PM Room
More from the Same Authors
-
2021 : MetaDataset: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts »
Weixin Liang · James Zou · Weixin Liang -
2021 : Stateful Performative Gradient Descent »
Zachary Izzo · James Zou · Lexing Ying -
2022 : On the nonlinear correlation of ML performance across data subpopulations »
Weixin Liang · Yining Mao · Yongchan Kwon · Xinyu Yang · James Zou -
2022 : On the nonlinear correlation of ML performance across data subpopulations »
Weixin Liang · Yining Mao · Yongchan Kwon · Xinyu Yang · James Zou -
2022 : Mind the Gap: Understanding the Modality Gap in Multi-modal Contrastive Representation Learning »
Weixin Liang · Yuhui Zhang · Yongchan Kwon · Serena Yeung · James Zou -
2023 : Last-Layer Fairness Fine-tuning is Simple and Effective for Neural Networks »
Yuzhen Mao · Zhun Deng · Huaxiu Yao · Ting Ye · Kenji Kawaguchi · James Zou -
2023 : Prospectors: Leveraging Short Contexts to Mine Salient Objects in High-dimensional Imagery »
Gautam Machiraju · Arjun Desai · James Zou · Christopher Re · Parag Mallick -
2023 : Beyond Confidence: Reliable Models Should Also Consider Atypicality »
Mert Yuksekgonul · Linjun Zhang · James Zou · Carlos Guestrin -
2023 : Less is More: Using Multiple LLMs for Applications with Lower Costs »
Lingjiao Chen · Matei Zaharia · James Zou -
2023 Poster: Data-Driven Subgroup Identification for Linear Regression »
Zachary Izzo · Ruishan Liu · James Zou -
2023 Poster: Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value »
Yongchan Kwon · James Zou -
2023 Poster: Accuracy on the Curve: On the Nonlinear Correlation of ML Performance Between Data Subpopulations »
Weixin Liang · Yining Mao · Yongchan Kwon · Xinyu Yang · James Zou -
2023 Poster: Discover and Cure: Concept-aware Mitigation of Spurious Correlation »
Shirley Wu · Mert Yuksekgonul · Linjun Zhang · James Zou -
2022 : Invited talk #2 James Zou (Title: Machine learning to make clinical trials more efficient and diverse) »
James Zou -
2022 : GSCLIP : A Framework for Explaining Distribution Shifts in Natural Language »
Zhiying Zhu · Weixin Liang · James Zou -
2022 : 7-UP: generating in silico CODEX from a small set of immunofluorescence markers »
James Zou -
2022 Poster: Improving Out-of-Distribution Robustness via Selective Augmentation »
Huaxiu Yao · Yu Wang · Sai Li · Linjun Zhang · Weixin Liang · James Zou · Chelsea Finn -
2022 Spotlight: Improving Out-of-Distribution Robustness via Selective Augmentation »
Huaxiu Yao · Yu Wang · Sai Li · Linjun Zhang · Weixin Liang · James Zou · Chelsea Finn -
2022 Poster: Meaningfully debugging model mistakes using conceptual counterfactual explanations »
Abubakar Abid · Mert Yuksekgonul · James Zou -
2022 Spotlight: Meaningfully debugging model mistakes using conceptual counterfactual explanations »
Abubakar Abid · Mert Yuksekgonul · James Zou -
2019 Poster: Adaptive Monte Carlo Multiple Testing via Multi-Armed Bandits »
Martin Zhang · James Zou · David Tse -
2019 Oral: Adaptive Monte Carlo Multiple Testing via Multi-Armed Bandits »
Martin Zhang · James Zou · David Tse -
2017 Poster: Estimating the unseen from multiple populations »
Aditi Raghunathan · Greg Valiant · James Zou -
2017 Poster: Learning Latent Space Models with Angular Constraints »
Pengtao Xie · Yuntian Deng · Yi Zhou · Abhimanu Kumar · Yaoliang Yu · James Zou · Eric Xing -
2017 Talk: Learning Latent Space Models with Angular Constraints »
Pengtao Xie · Yuntian Deng · Yi Zhou · Abhimanu Kumar · Yaoliang Yu · James Zou · Eric Xing -
2017 Talk: Estimating the unseen from multiple populations »
Aditi Raghunathan · Greg Valiant · James Zou