Timezone: »
Deriving modular inductive biases from the principle of independent mechanisms
Francesco Locatello
Causal representation learning tackles the problem of discovering high-level variables from low-level observations. In this talk, I will discuss how modular architectures such as Neural Interpreters and Neural Attentive Circuits implement inductive biases from the causal principle of independent mechanisms. Leveraging dynamic connectivity graphs and conditional computatations, I will showcase their scalability and interesting properties for robust recognition, efficient transfer, and reasoning.
Author Information
Francesco Locatello (Amazon Web Services)
More from the Same Authors
-
2021 : Representation Learning for Out-of-distribution Generalization in Downstream Tasks »
Frederik Träuble · Andrea Dittadi · Manuel Wuthrich · Felix Widmaier · Peter V Gehler · Ole Winther · Francesco Locatello · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer -
2021 : Representation Learning for Out-of-distribution Generalization in Downstream Tasks »
Frederik Träuble · Andrea Dittadi · Manuel Wüthrich · Felix Widmaier · Peter Gehler · Ole Winther · Francesco Locatello · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer -
2021 Poster: On Disentangled Representations Learned from Correlated Data »
Frederik Träuble · Elliot Creager · Niki Kilbertus · Francesco Locatello · Andrea Dittadi · Anirudh Goyal · Bernhard Schölkopf · Stefan Bauer -
2021 Oral: On Disentangled Representations Learned from Correlated Data »
Frederik Träuble · Elliot Creager · Niki Kilbertus · Francesco Locatello · Andrea Dittadi · Anirudh Goyal · Bernhard Schölkopf · Stefan Bauer