Timezone: »
Test-time adaptation harnesses test inputs to im- prove the accuracy of a model trained on source data when tested on shifted target data. Existing methods update the source model by (re- )training on each target domain. While effective, re-training is sensitive to the amount and order of the data and the hyperparameters for optimization. We instead update the target data, by projecting all test inputs toward the source domain with a generative diffusion model. Our diffusion-driven adaptation method, DDA, shares its models for classification and generation across all domains. Both models are trained on the source domain, then fixed during testing. We augment diffusion with image guidance and self-ensembling to automatically decide how much to adapt. Input adaptation by DDA is more robust than prior model adaptation approaches across a variety of corruptions, architectures, and data regimes on the ImageNet- C benchmark. With its input-wise updates, DDA succeeds where model adaptation degrades on too little data (small batches), on dependent data (non-random order), or on mixed data (multiple corruptions).
Author Information
Jin Gao (Shanghai Jiaotong University)
Jialing Zhang (Shanghai Jiaotong University)
Xihui Liu (UC Berkeley)
Trevor Darrell (University of California at Berkeley)
Evan Shelhamer (DeepMind)
Dequan Wang (UC Berkeley)
More from the Same Authors
-
2021 : Explaining Reinforcement Learning Policies through Counterfactual Trajectories »
Julius Frost · Olivia Watkins · Eric Weiner · Pieter Abbeel · Trevor Darrell · Bryan Plummer · Kate Saenko -
2022 Poster: GACT: Activation Compressed Training for Generic Network Architectures »
Xiaoxuan Liu · Lianmin Zheng · Dequan Wang · Yukuo Cen · Weize Chen · Xu Han · Jianfei Chen · Zhiyuan Liu · Jie Tang · Joseph Gonzalez · Michael Mahoney · Alvin Cheung -
2022 Poster: Visual Attention Emerges from Recurrent Sparse Reconstruction »
Baifeng Shi · Yale Song · Neel Joshi · Trevor Darrell · Xin Wang -
2022 Spotlight: Visual Attention Emerges from Recurrent Sparse Reconstruction »
Baifeng Shi · Yale Song · Neel Joshi · Trevor Darrell · Xin Wang -
2022 Spotlight: GACT: Activation Compressed Training for Generic Network Architectures »
Xiaoxuan Liu · Lianmin Zheng · Dequan Wang · Yukuo Cen · Weize Chen · Xu Han · Jianfei Chen · Zhiyuan Liu · Jie Tang · Joseph Gonzalez · Michael Mahoney · Alvin Cheung -
2022 Poster: Zero-Shot Reward Specification via Grounded Natural Language »
Parsa Mahmoudieh · Deepak Pathak · Trevor Darrell -
2022 Spotlight: Zero-Shot Reward Specification via Grounded Natural Language »
Parsa Mahmoudieh · Deepak Pathak · Trevor Darrell -
2022 Poster: Evaluating the Adversarial Robustness of Adaptive Test-time Defenses »
Francesco Croce · Sven Gowal · Thomas Brunner · Evan Shelhamer · Matthias Hein · Taylan Cemgil -
2022 Spotlight: Evaluating the Adversarial Robustness of Adaptive Test-time Defenses »
Francesco Croce · Sven Gowal · Thomas Brunner · Evan Shelhamer · Matthias Hein · Taylan Cemgil -
2021 Workshop: ICML Workshop on Human in the Loop Learning (HILL) »
Trevor Darrell · Xin Wang · Li Erran Li · Fisher Yu · Zeynep Akata · Wenwu Zhu · Pradeep Ravikumar · Shiji Zhou · Shanghang Zhang · Kalesha Bullard -
2021 Poster: ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training »
Jianfei Chen · Lianmin Zheng · Zhewei Yao · Dequan Wang · Ion Stoica · Michael Mahoney · Joseph E Gonzalez -
2021 Poster: Compositional Video Synthesis with Action Graphs »
Amir Bar · Roi Herzig · Xiaolong Wang · Anna Rohrbach · Gal Chechik · Trevor Darrell · Amir Globerson -
2021 Spotlight: Compositional Video Synthesis with Action Graphs »
Amir Bar · Roi Herzig · Xiaolong Wang · Anna Rohrbach · Gal Chechik · Trevor Darrell · Amir Globerson -
2021 Oral: ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training »
Jianfei Chen · Lianmin Zheng · Zhewei Yao · Dequan Wang · Ion Stoica · Michael Mahoney · Joseph E Gonzalez -
2020 Workshop: 2nd ICML Workshop on Human in the Loop Learning (HILL) »
Shanghang Zhang · Xin Wang · Fisher Yu · Jiajun Wu · Trevor Darrell -
2020 Poster: Video Prediction via Example Guidance »
Jingwei Xu · Harry (Huazhe) Xu · Bingbing Ni · Xiaokang Yang · Trevor Darrell -
2020 Poster: Frustratingly Simple Few-Shot Object Detection »
Xin Wang · Thomas Huang · Joseph E Gonzalez · Trevor Darrell · Fisher Yu -
2019 : Fisher Yu: "Motion and Prediction for Autonomous Driving" »
Fisher Yu · Trevor Darrell -
2019 Poster: Infinite Mixture Prototypes for Few-shot Learning »
Kelsey Allen · Evan Shelhamer · Hanul Shin · Josh Tenenbaum -
2019 Oral: Infinite Mixture Prototypes for Few-shot Learning »
Kelsey Allen · Evan Shelhamer · Hanul Shin · Josh Tenenbaum -
2018 Poster: CyCADA: Cycle-Consistent Adversarial Domain Adaptation »
Judy Hoffman · Eric Tzeng · Taesung Park · Jun-Yan Zhu · Philip Isola · Kate Saenko · Alexei Efros · Trevor Darrell -
2018 Oral: CyCADA: Cycle-Consistent Adversarial Domain Adaptation »
Judy Hoffman · Eric Tzeng · Taesung Park · Jun-Yan Zhu · Philip Isola · Kate Saenko · Alexei Efros · Trevor Darrell -
2017 Poster: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell -
2017 Talk: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell