Timezone: »
While neural networks have shown remarkable success on classification tasks in terms of average-case performance, they often fail to perform well on certain groups of the data, for instance when spurious correlations are present. Unfortunately, group information may be expensive to obtain; thus, recent works in robustness and fairness have proposed ways to improve worst-group performance even when group labels are unavailable. However, these methods generally underperform methods that utilize group information at training time. In this work, we assume access to a small number of group labels alongside a larger dataset without group labels. We propose BARACK, a simple two-step framework to utilize this partial group information to improve worst-group performance: train a model to predict the missing group labels for the training data, and then use these predicted group labels in a robust optimization objective. Theoretically, we provide generalization bounds for our approach in terms of the worst-group performance, which scale with respect to both the total number of training points and the number of training points with group labels. Empirically, across four spurious correlation and robustness benchmark tasks, our method outperforms the baselines that do not use group information, even when only 1-33% of points have group labels.
Author Information
Nimit Sohoni (Stanford University)
Maziar Sanjabi (Meta AI)
Nicolas Ballas (Université de Montréal)
Aditya Grover (UCLA)
Shaoliang Nie (Facebook)
Hamed Firooz (Facebook)
Christopher Re (Stanford University)
More from the Same Authors
-
2021 : A Standardized Data Collection Toolkit for Model Benchmarking »
Avanika Narayan · Piero Molino · Karan Goel · Christopher Re -
2022 : Towards Better Understanding of Self-Supervised Representations »
Neha Mukund Kalibhat · Kanika Narang · Hamed Firooz · Maziar Sanjabi · Soheil Feizi -
2022 : Contrastive Adapters for Foundation Model Group Robustness »
Michael Zhang · Christopher Re -
2022 : The Importance of Background Information for Out of Distribution Generalization »
Jupinder Parmar · Khaled Saab · Brian Pogatchnik · Daniel Rubin · Christopher Ré -
2022 : Transform Once: Efficient Operator Learning in Frequency Domain »
Michael Poli · Stefano Massaroli · Federico Berto · Jinkyoo Park · Tri Dao · Christopher Re · Stefano Ermon -
2023 Poster: Text-To-Concept (and Back) via Cross-Model Alignment »
Mazda Moayeri · Keivan Rezaei · Maziar Sanjabi · Soheil Feizi -
2023 Poster: Identifying Interpretable Subspaces in Image Representations »
Neha Mukund Kalibhat · Shweta Bhardwaj · C. Bayan Bruss · Hamed Firooz · Maziar Sanjabi · Soheil Feizi -
2023 Poster: Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time »
Zichang Liu · Jue Wang · Tri Dao · Tianyi Zhou · Binhang Yuan · Zhao Song · Anshumali Shrivastava · Ce Zhang · Yuandong Tian · Christopher Re · Beidi Chen -
2023 Poster: Diffusion Models for Offline Black-Box Optimization »
Siddarth Krishnamoorthy · Satvik Mashkaria · Aditya Grover -
2023 Poster: Generative Pretraining for Offline Model-based Optimization »
Satvik Mashkaria · Siddarth Krishnamoorthy · Aditya Grover -
2023 Poster: Simple Hardware-Efficient Long Convolutions for Sequence Modeling »
Daniel Y Fu · Elliot L Epstein · Eric Nguyen · Michael Zhang · Tri Dao · Atri Rudra · Christopher Re -
2023 Poster: Semi-Supervised Offline Reinforcement Learning with Action-Free Trajectories »
Qinqing Zheng · Mikael Henaff · Brandon Amos · Aditya Grover -
2023 Poster: CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks »
Jue Wang · Yucheng Lu · Binhang Yuan · Beidi Chen · Percy Liang · Chris De Sa · Christopher Re · Ce Zhang -
2023 Poster: ClimaX: A foundation model for weather and climate »
Tung Nguyen · Johannes Brandstetter · Ashish Kapoor · Jayesh K. Gupta · Aditya Grover -
2023 Poster: Hyena Hierarchy: Towards Larger Convolutional Language Models »
Michael Poli · Stefano Massaroli · Eric Nguyen · Daniel Y Fu · Tri Dao · Stephen Baccus · Yoshua Bengio · Stefano Ermon · Christopher Re -
2023 Poster: Analyzing Privacy Leakage in Machine Learning via Multiple Hypothesis Testing: A Lesson From Fano »
Chuan Guo · Alexandre Sablayrolles · Maziar Sanjabi -
2023 Poster: FlexGen: High-throughput Generative Inference of Large Language Models with a Single GPU »
Ying Sheng · Lianmin Zheng · Binhang Yuan · Zhuohan Li · Max Ryabinin · Beidi Chen · Percy Liang · Christopher Re · Ion Stoica · Ce Zhang -
2023 Oral: Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time »
Zichang Liu · Jue Wang · Tri Dao · Tianyi Zhou · Binhang Yuan · Zhao Song · Anshumali Shrivastava · Ce Zhang · Yuandong Tian · Christopher Re · Beidi Chen -
2023 Oral: Hyena Hierarchy: Towards Larger Convolutional Language Models »
Michael Poli · Stefano Massaroli · Eric Nguyen · Daniel Y Fu · Tri Dao · Stephen Baccus · Yoshua Bengio · Stefano Ermon · Christopher Re -
2023 Oral: FlexGen: High-throughput Generative Inference of Large Language Models with a Single GPU »
Ying Sheng · Lianmin Zheng · Binhang Yuan · Zhuohan Li · Max Ryabinin · Beidi Chen · Percy Liang · Christopher Re · Ion Stoica · Ce Zhang -
2022 : FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness »
Tri Dao · Daniel Y Fu · Stefano Ermon · Atri Rudra · Christopher Re -
2022 Poster: Federated Learning with Partial Model Personalization »
Krishna Pillutla · Kshitiz Malik · Abdel-rahman Mohamed · Michael Rabbat · Maziar Sanjabi · Lin Xiao -
2022 Poster: It’s Raw! Audio Generation with State-Space Models »
Karan Goel · Albert Gu · Chris Donahue · Christopher Re -
2022 Spotlight: Federated Learning with Partial Model Personalization »
Krishna Pillutla · Kshitiz Malik · Abdel-rahman Mohamed · Michael Rabbat · Maziar Sanjabi · Lin Xiao -
2022 Oral: It’s Raw! Audio Generation with State-Space Models »
Karan Goel · Albert Gu · Chris Donahue · Christopher Re -
2022 Poster: Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning »
Mayee Chen · Daniel Y Fu · Avanika Narayan · Michael Zhang · Zhao Song · Kayvon Fatahalian · Christopher Re -
2022 Spotlight: Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning »
Mayee Chen · Daniel Y Fu · Avanika Narayan · Michael Zhang · Zhao Song · Kayvon Fatahalian · Christopher Re -
2022 Poster: UNIREX: A Unified Learning Framework for Language Model Rationale Extraction »
Aaron Chan · Maziar Sanjabi · Lambert Mathias · Liang Tan · Shaoliang Nie · Xiaochang Peng · Xiang Ren · Hamed Firooz -
2022 Poster: Monarch: Expressive Structured Matrices for Efficient and Accurate Training »
Tri Dao · Beidi Chen · Nimit Sohoni · Arjun Desai · Michael Poli · Jessica Grogan · Alexander Liu · Aniruddh Rao · Atri Rudra · Christopher Re -
2022 Poster: Correct-N-Contrast: a Contrastive Approach for Improving Robustness to Spurious Correlations »
Michael Zhang · Nimit Sohoni · Hongyang Zhang · Chelsea Finn · Christopher Re -
2022 Oral: Correct-N-Contrast: a Contrastive Approach for Improving Robustness to Spurious Correlations »
Michael Zhang · Nimit Sohoni · Hongyang Zhang · Chelsea Finn · Christopher Re -
2022 Oral: Monarch: Expressive Structured Matrices for Efficient and Accurate Training »
Tri Dao · Beidi Chen · Nimit Sohoni · Arjun Desai · Michael Poli · Jessica Grogan · Alexander Liu · Aniruddh Rao · Atri Rudra · Christopher Re -
2022 Spotlight: UNIREX: A Unified Learning Framework for Language Model Rationale Extraction »
Aaron Chan · Maziar Sanjabi · Lambert Mathias · Liang Tan · Shaoliang Nie · Xiaochang Peng · Xiang Ren · Hamed Firooz -
2021 Poster: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections »
Ines Chami · Albert Gu · Dat P Nguyen · Christopher Re -
2021 Spotlight: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections »
Ines Chami · Albert Gu · Dat P Nguyen · Christopher Re -
2021 Poster: Mandoline: Model Evaluation under Distribution Shift »
Mayee Chen · Karan Goel · Nimit Sohoni · Fait Poms · Kayvon Fatahalian · Christopher Re -
2021 Spotlight: Mandoline: Model Evaluation under Distribution Shift »
Mayee Chen · Karan Goel · Nimit Sohoni · Fait Poms · Kayvon Fatahalian · Christopher Re -
2021 Poster: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2021 Spotlight: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2020 Poster: Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods »
Daniel Y Fu · Mayee Chen · Frederic Sala · Sarah Hooper · Kayvon Fatahalian · Christopher Re -
2020 Poster: On the Generalization Effects of Linear Transformations in Data Augmentation »
Sen Wu · Hongyang Zhang · Gregory Valiant · Christopher Re -
2019 Poster: Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations »
Tri Dao · Albert Gu · Matthew Eichhorn · Atri Rudra · Christopher Re -
2019 Poster: Learning Dependency Structures for Weak Supervision Models »
Paroma Varma · Frederic Sala · Ann He · Alexander J Ratner · Christopher Re -
2019 Oral: Learning Dependency Structures for Weak Supervision Models »
Paroma Varma · Frederic Sala · Ann He · Alexander J Ratner · Christopher Re -
2019 Oral: Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations »
Tri Dao · Albert Gu · Matthew Eichhorn · Atri Rudra · Christopher Re -
2019 Poster: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re -
2019 Oral: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re -
2018 Poster: Representation Tradeoffs for Hyperbolic Embeddings »
Frederic Sala · Christopher De Sa · Albert Gu · Christopher Re -
2018 Oral: Representation Tradeoffs for Hyperbolic Embeddings »
Frederic Sala · Christopher De Sa · Albert Gu · Christopher Re -
2017 Poster: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Talk: A Closer Look at Memorization in Deep Networks »
David Krueger · Yoshua Bengio · Stanislaw Jastrzebski · Maxinder S. Kanwal · Nicolas Ballas · Asja Fischer · Emmanuel Bengio · Devansh Arpit · Tegan Maharaj · Aaron Courville · Simon Lacoste-Julien -
2017 Poster: Learning the Structure of Generative Models without Labeled Data »
Stephen Bach · Bryan He · Alexander J Ratner · Christopher Re -
2017 Talk: Learning the Structure of Generative Models without Labeled Data »
Stephen Bach · Bryan He · Alexander J Ratner · Christopher Re