Timezone: »
Latent Variable Models for Bayesian Causal Discovery
Jithendaraa Subramanian · Jithendaraa Subramanian · Yashas Annadani · Ivaxi Sheth · Stefan Bauer · Derek Nowrouzezahrai · Samira Ebrahimi Kahou
Event URL: https://openreview.net/forum?id=Au60kZskzgH »
Learning predictors that do not rely on spurious correlations involves building causal representations. However, learning such a representation is very challenging. We, therefore, formulate the problem of learning a causal representation from high dimensional data and study causal recovery with synthetic data. This work introduces a latent variable decoder model, Decoder BCD, for Bayesian causal discovery and performs experiments in mildly supervised and unsupervised settings. We present a series of synthetic experiments to characterize important factors for causal discovery.
Author Information
Jithendaraa Subramanian (McGill University, Mila)
Masters student at McGill interested in building causal representations of the world into deep learning systems
Jithendaraa Subramanian (McGill University)
Yashas Annadani (ETH Zurich)
Ivaxi Sheth (Montreal Institute for Learning Algorithms, University of Montreal, Université de Montréal)
Stefan Bauer (KTH Stockholm)
Derek Nowrouzezahrai (McGill University)
Samira Ebrahimi Kahou (Microsoft Research)
More from the Same Authors
-
2021 : Representation Learning for Out-of-distribution Generalization in Downstream Tasks »
Frederik Träuble · Andrea Dittadi · Manuel Wuthrich · Felix Widmaier · Peter V Gehler · Ole Winther · Francesco Locatello · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer -
2021 : Representation Learning for Out-of-distribution Generalization in Downstream Tasks »
Frederik Träuble · Andrea Dittadi · Manuel Wüthrich · Felix Widmaier · Peter Gehler · Ole Winther · Francesco Locatello · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer -
2021 : Variational Causal Networks: Approximate Bayesian Inference over Causal Structures »
Yashas Annadani · Jonas Rothfuss · Alexandre Lacoste · Nino Scherrer · Anirudh Goyal · Yoshua Bengio · Stefan Bauer -
2022 : On the Generalization and Adaption Performance of Causal Models »
Nino Scherrer · Anirudh Goyal · Stefan Bauer · Yoshua Bengio · Rosemary Nan Ke -
2022 Poster: Adaptive Gaussian Process Change Point Detection »
Edoardo Caldarelli · Philippe Wenk · Stefan Bauer · Andreas Krause -
2022 Spotlight: Adaptive Gaussian Process Change Point Detection »
Edoardo Caldarelli · Philippe Wenk · Stefan Bauer · Andreas Krause -
2022 : Q&A »
Nan Rosemary Ke · Stefan Bauer -
2022 : Deep Learning for Causality »
Stefan Bauer -
2022 Tutorial: Causality and Deep Learning: Synergies, Challenges and the Future »
Nan Rosemary Ke · Stefan Bauer -
2021 Poster: Function Contrastive Learning of Transferable Meta-Representations »
Muhammad Waleed Gondal · Shruti Joshi · Nasim Rahaman · Stefan Bauer · Manuel Wuthrich · Bernhard Schölkopf -
2021 Spotlight: Function Contrastive Learning of Transferable Meta-Representations »
Muhammad Waleed Gondal · Shruti Joshi · Nasim Rahaman · Stefan Bauer · Manuel Wuthrich · Bernhard Schölkopf -
2020 Workshop: Inductive Biases, Invariances and Generalization in Reinforcement Learning »
Anirudh Goyal · Rosemary Nan Ke · Jane Wang · Stefan Bauer · Theophane Weber · Fabio Viola · Bernhard Schölkopf · Stefan Bauer