Timezone: »
Despite recent success in using the invariance principle for out-of-distribution (OOD) generalization on Euclidean data (e.g., images), studies on graph data are still limited. Different from images, the complex nature of graphs poses unique challenges to adopting the invariance principle. In particular, distribution shifts on graphs can appear in a variety of forms such as attributes and structures, making it difficult to identify the invariance. Moreover, domain or environment partitions, which are often required by OOD methods on Euclidean data, could be highly expensive to obtain for graphs. To bridge this gap, we propose a new framework, called Graph Out-Of-Distribution Generalization (GOOD), to capture the invariance of graphs for guaranteed OOD generalization under various distribution shifts. Specifically, we characterize potential distribution shifts on graphs with causal models, concluding that OOD generalization on graphs is achievable when models focus only on subgraphs containing the most information about the causes of labels. Accordingly, we propose an information-theoretic objective to extract the desired subgraphs that maximally preserve the invariant intra-class information. Learning with these subgraphs is immune to distribution shifts. Extensive experiments on both synthetic and real-world datasets, including a challenging setting in AI-aided drug discovery, validate the superior OOD generalization ability of GOOD.
Author Information
Yongqiang Chen (The Chinese University of Hong Kong)
Yonggang Zhang (Hong Kong Baptist University)
Yatao Bian (Tencent AI Lab)
Han Yang (The Chinese University of Hong Kong)
Kaili MA (CUHK)
Binghui Xie (The Chinese University of Hongkong)
Tongliang Liu (The University of Sydney)
Bo Han (HKBU / RIKEN)
James Cheng (CUHK)
More from the Same Authors
-
2022 : Pareto Invariant Risk Minimization »
Yongqiang Chen · Kaiwen Zhou · Yatao Bian · Binghui Xie · Kaili MA · Yonggang Zhang · Han Yang · Bo Han · James Cheng -
2023 Poster: Phase-aware Adversarial Defense for Improving Adversarial Robustness »
Dawei Zhou · Nannan Wang · Heng Yang · Xinbo Gao · Tongliang Liu -
2023 Poster: A Universal Unbiased Method for Classification from Aggregate Observations »
Zixi Wei · LEI FENG · Bo Han · Tongliang Liu · Gang Niu · Xiaofeng Zhu · Heng Tao Shen -
2023 Poster: Detecting Out-of-distribution Data through In-distribution Class Prior »
Xue JIANG · Feng Liu · zhen fang · Hong Chen · Tongliang Liu · Feng Zheng · Bo Han -
2023 Poster: Which is Better for Learning with Noisy Labels: The Semi-supervised Method or Modeling Label Noise? »
Yu Yao · Mingming Gong · Yuxuan Du · Jun Yu · Bo Han · Kun Zhang · Tongliang Liu -
2023 Poster: On Strengthening and Defending Graph Reconstruction Attack with Markov Chain Approximation »
Zhanke Zhou · Chenyu Zhou · Xuan Li · Jiangchao Yao · QUANMING YAO · Bo Han -
2023 Poster: Diversity-enhancing Generative Network for Few-shot Hypothesis Adaptation »
Ruijiang Dong · Feng Liu · Haoang Chi · Tongliang Liu · Mingming Gong · Gang Niu · Masashi Sugiyama · Bo Han -
2023 Poster: Detecting Adversarial Data by Probing Multiple Perturbations Using Expected Perturbation Score »
Shuhai Zhang · Feng Liu · Jiahao Yang · 逸凡 杨 · Changsheng Li · Bo Han · Mingkui Tan -
2023 Poster: Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection Capability »
Jianing Zhu · Hengzhuang Li · Jiangchao Yao · Tongliang Liu · Jianliang Xu · Bo Han -
2023 Poster: Exploring Model Dynamics for Accumulative Poisoning Discovery »
Jianing Zhu · Xiawei Guo · Jiangchao Yao · Chao Du · LI He · Shuo Yuan · Tongliang Liu · Liang Wang · Bo Han -
2023 Poster: Moderately Distributional Exploration for Domain Generalization »
Rui Dai · Yonggang Zhang · zhen fang · Bo Han · Xinmei Tian -
2023 Poster: Eliminating Adversarial Noise via Information Discard and Robust Representation Restoration »
Dawei Zhou · Yukun Chen · Nannan Wang · Decheng Liu · Xinbo Gao · Tongliang Liu -
2023 Poster: Evolving Semantic Prototype Improves Generative Zero-Shot Learning »
Shiming Chen · Wenjin Hou · Ziming Hong · Xiaohan Ding · Yibing Song · Xinge You · Tongliang Liu · Kun Zhang -
2022 : DrugOOD: Out-of-Distribution (OOD) Dataset Curator and Benchmark for AI-aided Drug Discovery -- A Focus on Affinity Prediction Problems with Noise Annotations »
Yatao Bian -
2022 : Hypergraph Convolutional Networks via Equivalence Between Hypergraphs and Undirected Graphs »
Jiying Zhang · fuyang li · Xi Xiao · Tingyang Xu · Yu Rong · Junzhou Huang · Yatao Bian -
2022 Poster: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: Contrastive Learning with Boosted Memorization »
Zhihan Zhou · Jiangchao Yao · Yan-Feng Wang · Bo Han · Ya Zhang -
2022 Poster: Virtual Homogeneity Learning: Defending against Data Heterogeneity in Federated Learning »
Zhenheng Tang · Yonggang Zhang · Shaohuai Shi · Xin He · Bo Han · Xiaowen Chu -
2022 Spotlight: Contrastive Learning with Boosted Memorization »
Zhihan Zhou · Jiangchao Yao · Yan-Feng Wang · Bo Han · Ya Zhang -
2022 Spotlight: Virtual Homogeneity Learning: Defending against Data Heterogeneity in Federated Learning »
Zhenheng Tang · Yonggang Zhang · Shaohuai Shi · Xin He · Bo Han · Xiaowen Chu -
2022 Spotlight: Estimating Instance-dependent Bayes-label Transition Matrix using a Deep Neural Network »
Shuo Yang · Erkun Yang · Bo Han · Yang Liu · Min Xu · Gang Niu · Tongliang Liu -
2022 Poster: $p$-Laplacian Based Graph Neural Networks »
Guoji Fu · Peilin Zhao · Yatao Bian -
2022 Poster: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Poster: Modeling Adversarial Noise for Adversarial Training »
Dawei Zhou · Nannan Wang · Bo Han · Tongliang Liu -
2022 Poster: Improving Adversarial Robustness via Mutual Information Estimation »
Dawei Zhou · Nannan Wang · Xinbo Gao · Bo Han · Xiaoyu Wang · Yibing Zhan · Tongliang Liu -
2022 Spotlight: Understanding Robust Overfitting of Adversarial Training and Beyond »
Chaojian Yu · Bo Han · Li Shen · Jun Yu · Chen Gong · Mingming Gong · Tongliang Liu -
2022 Spotlight: $p$-Laplacian Based Graph Neural Networks »
Guoji Fu · Peilin Zhao · Yatao Bian -
2022 Spotlight: Improving Adversarial Robustness via Mutual Information Estimation »
Dawei Zhou · Nannan Wang · Xinbo Gao · Bo Han · Xiaoyu Wang · Yibing Zhan · Tongliang Liu -
2022 Spotlight: Modeling Adversarial Noise for Adversarial Training »
Dawei Zhou · Nannan Wang · Bo Han · Tongliang Liu -
2022 Poster: Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack »
Ruize Gao · Jiongxiao Wang · Kaiwen Zhou · Feng Liu · Binghui Xie · Gang Niu · Bo Han · James Cheng -
2022 Poster: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2022 Spotlight: Fast and Reliable Evaluation of Adversarial Robustness with Minimum-Margin Attack »
Ruize Gao · Jiongxiao Wang · Kaiwen Zhou · Feng Liu · Binghui Xie · Gang Niu · Bo Han · James Cheng -
2022 Oral: To Smooth or Not? When Label Smoothing Meets Noisy Labels »
Jiaheng Wei · Hangyu Liu · Tongliang Liu · Gang Niu · Masashi Sugiyama · Yang Liu -
2021 Poster: Towards Defending against Adversarial Examples via Attack-Invariant Features »
Dawei Zhou · Tongliang Liu · Bo Han · Nannan Wang · Chunlei Peng · Xinbo Gao -
2021 Poster: Provably End-to-end Label-noise Learning without Anchor Points »
Xuefeng Li · Tongliang Liu · Bo Han · Gang Niu · Masashi Sugiyama -
2021 Poster: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Poster: Maximum Mean Discrepancy Test is Aware of Adversarial Attacks »
Ruize Gao · Feng Liu · Jingfeng Zhang · Bo Han · Tongliang Liu · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Towards Defending against Adversarial Examples via Attack-Invariant Features »
Dawei Zhou · Tongliang Liu · Bo Han · Nannan Wang · Chunlei Peng · Xinbo Gao -
2021 Spotlight: Provably End-to-end Label-noise Learning without Anchor Points »
Xuefeng Li · Tongliang Liu · Bo Han · Gang Niu · Masashi Sugiyama -
2021 Spotlight: Learning Diverse-Structured Networks for Adversarial Robustness »
Xuefeng Du · Jingfeng Zhang · Bo Han · Tongliang Liu · Yu Rong · Gang Niu · Junzhou Huang · Masashi Sugiyama -
2021 Spotlight: Maximum Mean Discrepancy Test is Aware of Adversarial Attacks »
Ruize Gao · Feng Liu · Jingfeng Zhang · Bo Han · Tongliang Liu · Gang Niu · Masashi Sugiyama -
2021 Poster: Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels »
Songhua Wu · Xiaobo Xia · Tongliang Liu · Bo Han · Mingming Gong · Nannan Wang · Haifeng Liu · Gang Niu -
2021 Poster: Confidence Scores Make Instance-dependent Label-noise Learning Possible »
Antonin Berthon · Bo Han · Gang Niu · Tongliang Liu · Masashi Sugiyama -
2021 Spotlight: Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels »
Songhua Wu · Xiaobo Xia · Tongliang Liu · Bo Han · Mingming Gong · Nannan Wang · Haifeng Liu · Gang Niu -
2021 Oral: Confidence Scores Make Instance-dependent Label-noise Learning Possible »
Antonin Berthon · Bo Han · Gang Niu · Tongliang Liu · Masashi Sugiyama -
2020 Poster: Dual-Path Distillation: A Unified Framework to Improve Black-Box Attacks »
Yonggang Zhang · Ya Li · Tongliang Liu · Xinmei Tian -
2020 Poster: From Sets to Multisets: Provable Variational Inference for Probabilistic Integer Submodular Models »
Aytunc Sahin · Yatao Bian · Joachim Buhmann · Andreas Krause -
2020 Poster: Learning with Bounded Instance- and Label-dependent Label Noise »
Jiacheng Cheng · Tongliang Liu · Kotagiri Ramamohanarao · Dacheng Tao -
2020 Poster: Label-Noise Robust Domain Adaptation »
Xiyu Yu · Tongliang Liu · Mingming Gong · Kun Zhang · Kayhan Batmanghelich · Dacheng Tao -
2020 Poster: LTF: A Label Transformation Framework for Correcting Label Shift »
Jiaxian Guo · Mingming Gong · Tongliang Liu · Kun Zhang · Dacheng Tao -
2019 Poster: Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference »
Yatao Bian · Joachim Buhmann · Andreas Krause -
2019 Oral: Optimal Continuous DR-Submodular Maximization and Applications to Provable Mean Field Inference »
Yatao Bian · Joachim Buhmann · Andreas Krause -
2018 Poster: A Distributed Second-Order Algorithm You Can Trust »
Celestine Mendler-Dünner · Aurelien Lucchi · Matilde Gargiani · Yatao Bian · Thomas Hofmann · Martin Jaggi -
2018 Oral: A Distributed Second-Order Algorithm You Can Trust »
Celestine Mendler-Dünner · Aurelien Lucchi · Matilde Gargiani · Yatao Bian · Thomas Hofmann · Martin Jaggi -
2018 Poster: A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates »
Kaiwen Zhou · Fanhua Shang · James Cheng -
2018 Oral: A Simple Stochastic Variance Reduced Algorithm with Fast Convergence Rates »
Kaiwen Zhou · Fanhua Shang · James Cheng -
2017 Poster: Guarantees for Greedy Maximization of Non-submodular Functions with Applications »
Yatao Bian · Joachim Buhmann · Andreas Krause · Sebastian Tschiatschek -
2017 Talk: Guarantees for Greedy Maximization of Non-submodular Functions with Applications »
Yatao Bian · Joachim Buhmann · Andreas Krause · Sebastian Tschiatschek