Timezone: »
Real-world data collected from multiple domains can have multiple, distinct distribution shifts over multiple attributes. However, state-of-the art advances in domain generalization (DG) algorithms focus only on specific shifts over a single attribute. We introduce datasets with multi-attribute distribution shifts and find that existing DG algorithms fail to generalize. Using causal graphs to characterize the different types of shifts, we show that each multi-attribute causal graph entails different constraints over observed variables, and therefore any algorithm based on a single, fixed independence constraint cannot work well across all shifts. We present Causally Adaptive Constraint Minimization (CACM), an algorithm for identifying the correct independence constraints for regularization. Experiments confirm our theoretical claim: correct independence constraints lead to the highest accuracy on unseen domains. Our results demonstrate the importance of modeling the causal relationships inherent in a data-generating process, without which it can be impossible to know the correct regularization constraints for a dataset.
Author Information
JIVAT NEET KAUR (Microsoft Research, India)
Emre Kiciman (Microsoft Research)
Amit Sharma (Microsoft Research)
More from the Same Authors
-
2021 : DoWhy: Addressing Challenges in Expressing and Validating Causal Assumptions »
Amit Sharma · Vasilis Syrgkanis · cheng zhang · Emre Kiciman -
2022 : Probing Classifiers are Unreliable for Concept Removal and Detection »
Abhinav Kumar · Chenhao Tan · Amit Sharma -
2023 : Towards Modular Machine Learning Pipelines »
Aditya Modi · JIVAT NEET KAUR · Maggie Makar · Pavan Mallapragada · Amit Sharma · Emre Kiciman · Adith Swaminathan -
2022 : Spotlights »
Pratyush Maini · JIVAT NEET KAUR · Anil Palepu · Polina Kirichenko · Revant Teotia -
2022 Poster: Matching Learned Causal Effects of Neural Networks with Domain Priors »
Sai Srinivas Kancheti · Gowtham Reddy Abbavaram · Vineeth N Balasubramanian · Amit Sharma -
2022 Spotlight: Matching Learned Causal Effects of Neural Networks with Domain Priors »
Sai Srinivas Kancheti · Gowtham Reddy Abbavaram · Vineeth N Balasubramanian · Amit Sharma -
2021 Poster: Domain Generalization using Causal Matching »
Divyat Mahajan · Shruti Tople · Amit Sharma -
2021 Oral: Domain Generalization using Causal Matching »
Divyat Mahajan · Shruti Tople · Amit Sharma -
2020 Poster: Alleviating Privacy Attacks via Causal Learning »
Shruti Tople · Amit Sharma · Aditya Nori