Timezone: »
While machine learning models rapidly advance the state-of-the-art on various real-world tasks, out-of-domain (OOD) generalization remains a challenging problem given the vulnerability of these models to spurious correlations. We propose a balanced mini-batch sampling strategy to reduce the domain-specific spurious correlations in the observed training distributions. More specifically, we propose a two-phased method that 1) identifies the source of spurious correlations, and 2) builds balanced mini-batches free from spurious correlations by matching on the identified source. We provide an identifiability guarantee of the source of spuriousness and show that our proposed approach samples from a balanced, spurious-free distribution under ideal scenario. Experiments are conducted on three domain generalization datasets, demonstrating empirically that our balanced mini-batch sampling strategy improves the performance of four different established domain generalization model baselines compared to the random mini-batch sampling strategy.
Author Information
Xinyi Wang (University of California, Santa Barbara)
Michael Saxon (UC Santa Barbara)
Jiachen Li (University of California, Santa Barbara)
Hongyang Zhang (University of Waterloo)
Kun Zhang (Carnegie Mellon University)
William Wang (UCSB)
More from the Same Authors
-
2021 : Optimal transport for causal discovery »
Ruibo Tu · Kun Zhang · Hedvig Kjellström · Cheng Zhang -
2023 : Counterfactual Generation with Identifiability Guarantees »
Hanqi Yan · Lingjing Kong · Lin Gui · Yuejie Chi · Eric Xing · Yulan He · Kun Zhang -
2023 : Identification of Nonlinear Latent Hierarchical Causal Models »
Lingjing Kong · Biwei Huang · Feng Xie · Eric Xing · Yuejie Chi · Kun Zhang -
2023 : Advancing Counterfactual Inference through Quantile Regression »
Shaoan Xie · Biwei Huang · Bin Gu · Tongliang Liu · Kun Zhang -
2023 : Natural Counterfactuals With Necessary Backtracking »
Guangyuan Hao · Jiji Zhang · Hao Wang · Kun Zhang -
2023 : Reasoning Ability Emerges in Large Language Models as Aggregation of Reasoning Paths »
Xinyi Wang · William Wang -
2023 : Reasoning Ability Emerges in Large Language Models as Aggregation of Reasoning Paths »
Xinyi Wang · William Wang -
2023 : Large Language Models Are Implicitly Topic Models: Explaining and Finding Good Demonstrations for In-Context Learning »
Xinyi Wang · Wanrong Zhu · Michael Saxon · Mark Steyvers · William Wang -
2023 : Natural Counterfactuals With Necessary Backtracking »
Guangyuan Hao · Jiji Zhang · Hao Wang · Kun Zhang -
2023 Poster: Understanding the Impact of Adversarial Robustness on Accuracy Disparity »
Yuzheng Hu · Fan Wu · Hongyang Zhang · Han Zhao -
2023 Poster: A Law of Robustness beyond Isoperimetry »
Yihan Wu · Heng Huang · Hongyang Zhang -
2023 Poster: Identifiability of Label Noise Transition Matrix »
Yang Liu · Hao Cheng · Kun Zhang -
2023 Poster: Offline Reinforcement Learning with Closed-Form Policy Improvement Operators »
Jiachen Li · Edwin Zhang · Ming Yin · Jerry Bai · Yu-Xiang Wang · William Wang -
2023 Poster: Causal Discovery with Latent Confounders Based on Higher-Order Cumulants »
Ruichu Cai · Zhiyi Huang · Wei Chen · Zhifeng Hao · Kun Zhang -
2023 Poster: Feature Expansion for Graph Neural Networks »
Jiaqi Sun · Lin Zhang · Guangyi Chen · Peng XU · Kun Zhang · Yujiu Yang -
2023 Poster: Model Transferability with Responsive Decision Subjects »
Yatong Chen · Zeyu Tang · Kun Zhang · Yang Liu -
2023 Poster: Evolving Semantic Prototype Improves Generative Zero-Shot Learning »
Shiming Chen · Wenjin Hou · Ziming Hong · Xiaohan Ding · Yibing Song · Xinge You · Tongliang Liu · Kun Zhang -
2023 Poster: Which is Better for Learning with Noisy Labels: The Semi-supervised Method or Modeling Label Noise? »
Yu Yao · Mingming Gong · Yuxuan Du · Jun Yu · Bo Han · Kun Zhang · Tongliang Liu -
2023 Poster: ReDi: Efficient Learning-Free Diffusion Inference via Trajectory Retrieval »
Kexun Zhang · Xianjun Yang · William Wang · Lei Li -
2022 : Model Transferability With Responsive Decision Subjects »
Yang Liu · Yatong Chen · Zeyu Tang · Kun Zhang -
2022 Poster: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2022 Spotlight: Building Robust Ensembles via Margin Boosting »
Dinghuai Zhang · Hongyang Zhang · Aaron Courville · Yoshua Bengio · Pradeep Ravikumar · Arun Sai Suggala -
2022 Poster: RetrievalGuard: Provably Robust 1-Nearest Neighbor Image Retrieval »
Yihan Wu · Hongyang Zhang · Heng Huang -
2022 Poster: Identification of Linear Non-Gaussian Latent Hierarchical Structure »
Feng Xie · Biwei Huang · Zhengming Chen · Yangbo He · zhi geng · Kun Zhang -
2022 Poster: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Spotlight: Action-Sufficient State Representation Learning for Control with Structural Constraints »
Biwei Huang · Chaochao Lu · Liu Leqi · Jose Miguel Hernandez-Lobato · Clark Glymour · Bernhard Schölkopf · Kun Zhang -
2022 Spotlight: Identification of Linear Non-Gaussian Latent Hierarchical Structure »
Feng Xie · Biwei Huang · Zhengming Chen · Yangbo He · zhi geng · Kun Zhang -
2022 Spotlight: RetrievalGuard: Provably Robust 1-Nearest Neighbor Image Retrieval »
Yihan Wu · Hongyang Zhang · Heng Huang -
2022 Poster: Partial disentanglement for domain adaptation »
Lingjing Kong · Shaoan Xie · Weiran Yao · Yujia Zheng · Guangyi Chen · Petar Stojanov · Victor Akinwande · Kun Zhang -
2022 Spotlight: Partial disentanglement for domain adaptation »
Lingjing Kong · Shaoan Xie · Weiran Yao · Yujia Zheng · Guangyi Chen · Petar Stojanov · Victor Akinwande · Kun Zhang -
2020 Poster: Label-Noise Robust Domain Adaptation »
Xiyu Yu · Tongliang Liu · Mingming Gong · Kun Zhang · Kayhan Batmanghelich · Dacheng Tao -
2020 Poster: LTF: A Label Transformation Framework for Correcting Label Shift »
Jiaxian Guo · Mingming Gong · Tongliang Liu · Kun Zhang · Dacheng Tao -
2020 Poster: Characterizing Distribution Equivalence and Structure Learning for Cyclic and Acyclic Directed Graphs »
AmirEmad Ghassami · Alan Yang · Negar Kiyavash · Kun Zhang -
2019 Poster: Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models »
Biwei Huang · Kun Zhang · Mingming Gong · Clark Glymour -
2019 Oral: Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models »
Biwei Huang · Kun Zhang · Mingming Gong · Clark Glymour -
2019 Poster: On Learning Invariant Representations for Domain Adaptation »
Han Zhao · Remi Tachet des Combes · Kun Zhang · Geoff Gordon -
2019 Oral: On Learning Invariant Representations for Domain Adaptation »
Han Zhao · Remi Tachet des Combes · Kun Zhang · Geoff Gordon