Timezone: »
The future astronomical imaging surveys are set to provide precise constraints on cosmological parameters, such as dark energy. However, production of synthetic data for these surveys, to test and validate analysis methods, suffers from a very high computational cost. In particular, generating mock galaxy catalogs at sufficiently large volume and high resolution will soon become computationally unreachable. In this paper, we address this problem with a Deep Generative Model to create robust mock galaxy catalogs that may be used to test and develop the analysis pipelines of future weak lensing surveys. We build our model on a custom built Graph Convolutional Networks, by placing each galaxy on a graph node and then connecting the graphs within each gravitationally bound system. We train our model on a cosmological simulation with realistic galaxy populations to capture the 2D and 3D orientations of galaxies. The samples from the model exhibit comparable statistical properties to those in the simulations. To the best of our knowledge, this is the first instance of a generative model on graphs in an astrophysical/cosmological context
Author Information
Yesukhei Jagvaral (Carnegie Mellon University)
Rachel Mandelbaum (Carnegie Mellon University)
Francois Lanusse (CEA Saclay)
Siamak Ravanbakhsh (McGill - Mila)
Sukhdeep Singh (Carnegie Mellon University)
Duncan Campbell (Carnegie Mellon University)
More from the Same Authors
-
2022 : Neural Posterior Estimation with Differentiable Simulator »
Justine Zeghal · Francois Lanusse · Alexandre Boucaud · Benjamin Remy · Eric Aubourg -
2023 Workshop: 2nd ICML Workshop on Machine Learning for Astrophysics »
Francois Lanusse · Marc Huertas-Company · Brice Menard · Laurence Perreault-Levasseur · J. Xavier Prochaska · Uros Seljak · Francisco Villaescusa-Navarro · Ashley Villar -
2022 : Hybrid Physical-Neural ODEs for Fast N-body Simulations »
Denise Lanzieri · Francois Lanusse · Jean-Luc Starck -
2022 Workshop: Machine Learning for Astrophysics »
Francois Lanusse · Marc Huertas-Company · Vanessa Boehm · Brice Menard · Xavier Prochaska · Uros Seljak · Francisco Villaescusa-Navarro · Ashley Villar -
2022 Poster: EqR: Equivariant Representations for Data-Efficient Reinforcement Learning »
Arnab Kumar Mondal · Vineet Jain · Kaleem Siddiqi · Siamak Ravanbakhsh -
2022 Poster: Utility Theory for Sequential Decision Making »
Mehran Shakerinava · Siamak Ravanbakhsh -
2022 Spotlight: Utility Theory for Sequential Decision Making »
Mehran Shakerinava · Siamak Ravanbakhsh -
2022 Spotlight: EqR: Equivariant Representations for Data-Efficient Reinforcement Learning »
Arnab Kumar Mondal · Vineet Jain · Kaleem Siddiqi · Siamak Ravanbakhsh -
2021 Poster: Equivariant Networks for Pixelized Spheres »
Mehran Shakerinava · Siamak Ravanbakhsh -
2021 Spotlight: Equivariant Networks for Pixelized Spheres »
Mehran Shakerinava · Siamak Ravanbakhsh -
2020 Poster: Universal Equivariant Multilayer Perceptrons »
Siamak Ravanbakhsh -
2017 Poster: Equivariance Through Parameter-Sharing »
Siamak Ravanbakhsh · Jeff Schneider · Barnabás Póczos -
2017 Talk: Equivariance Through Parameter-Sharing »
Siamak Ravanbakhsh · Jeff Schneider · Barnabás Póczos