Timezone: »
A fundamental problem in one of the most popular models for continuous environments; i.e., linear dynamical systems, is to learn dynamics matrices from unstable state trajectories. While this problem is well-studied for a single system, little is known about multitask learning methods that utilize potential commonalities to estimate the dynamics matrices more accurately. The longstanding obstacle is that idiosyncratic instabilities nullify the benefit of sharing data across systems. We address this issue by introducing the new method of \emph{big random control actions}, and develop a novel performance analysis for that. To the authors' knowledge, this is the first theoretical guarantee for multitask learning under instability when system matrices are \emph{unknown} linear combinations of \emph{unknown} bases matrices. The techniques can be extended to multitask learning problems in other settings with non-stationary or temporally dependent data.
Author Information
Aditya Modi (Microsoft)
Ziping Xu (University of Michigan)
Mohamad Kazem Shirani Faradonbeh (University of Georgia)
Ambuj Tewari (University of Michigan)
More from the Same Authors
-
2022 : Epsilon-Greedy Reinforcement Learning Policy in Continuous-Time Systems »
Mohamad Kazem Shirani Faradonbeh -
2022 : Exploration Hurts in Bandits with Partially Observed Stochastic Contexts »
Hongju Park · Mohamad Kazem Shirani Faradonbeh -
2023 : Learning to Plan in Multi-dimensional Stochastic Differential Equations »
Mohamad Sadegh Shirani Faradonbeh · Mohamad Kazem Shirani Faradonbeh -
2023 : Balancing exploration and exploitation in Partially Observed Linear Contextual Bandits via Thompson Sampling »
Hongju Park · Mohamad Kazem Shirani Faradonbeh -
2023 Oral: Learning Mixtures of Markov Chains and MDPs »
Chinmaya Kausik · Kevin Tan · Ambuj Tewari -
2023 Poster: Learning Mixtures of Markov Chains and MDPs »
Chinmaya Kausik · Kevin Tan · Ambuj Tewari -
2023 Poster: Thompson Sampling for High-Dimensional Sparse Linear Contextual Bandits »
Sunrit Chakraborty · Saptarshi Roy · Ambuj Tewari -
2022 Poster: On the Statistical Benefits of Curriculum Learning »
Ziping Xu · Ambuj Tewari -
2022 Spotlight: On the Statistical Benefits of Curriculum Learning »
Ziping Xu · Ambuj Tewari -
2020 Poster: Clinician-in-the-Loop Decision Making: Reinforcement Learning with Near-Optimal Set-Valued Policies »
Shengpu Tang · Aditya Modi · Michael Sjoding · Jenna Wiens -
2019 : posters »
Zhengxing Chen · Juan Jose Garau Luis · Ignacio Albert Smet · Aditya Modi · Sabina Tomkins · Riley Simmons-Edler · Hongzi Mao · Alexander Irpan · Hao Lu · Rose Wang · Subhojyoti Mukherjee · Aniruddh Raghu · Syed Arbab Mohd Shihab · Byung Hoon Ahn · Rasool Fakoor · Pratik Chaudhari · Elena Smirnova · Min-hwan Oh · Xiaocheng Tang · Tony Qin · Qingyang Li · Marc Brittain · Ian Fox · Supratik Paul · Xiaofeng Gao · Yinlam Chow · Gabriel Dulac-Arnold · Ofir Nachum · Nikos Karampatziakis · Bharathan Balaji · Supratik Paul · Ali Davody · Djallel Bouneffouf · Himanshu Sahni · Soo Kim · Andrey Kolobov · Alexander Amini · Yao Liu · Xinshi Chen · · Craig Boutilier