Timezone: »

 
Uncertainty Quantification in Deep Learning
Dustin Tran

Fri Jul 22 10:30 AM -- 11:20 AM (PDT) @

Deep learning models are bad at signalling failure: They can make predictions with high confidence, and this is problematic in real-world applications such as healthcare, self-driving cars, and natural language systems, where there are considerable safety implications, or where there are discrepancies between the training data and data that the model makes predictions on. There is a pressing need both for understanding when models should not make predictions and improving model robustness to natural changes in the data. We'll give an overview of this problem setting. We also highlight promising avenues from recent work, including methods which average over multiple neural network predictions such as Bayesian neural nets and ensembles; as well as the recent surge in large pretrained models.

Author Information

Dustin Tran (Google Brain)

More from the Same Authors

  • 2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
    Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · Jie Ren · Joost van Amersfoort · Kehang Han · E. Kelly Buchanan · Kevin Murphy · Mark Collier · Mike Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani
  • 2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
    Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani
  • 2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
    Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani
  • 2021 : Uncertainty Modeling from 50M to 1B »
    Dustin Tran
  • 2020 Poster: Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors »
    Mike Dusenberry · Ghassen Jerfel · Yeming Wen · Yian Ma · Jasper Snoek · Katherine Heller · Balaji Lakshminarayanan · Dustin Tran
  • 2018 Poster: Image Transformer »
    Niki Parmar · Ashish Vaswani · Jakob Uszkoreit · Lukasz Kaiser · Noam Shazeer · Alexander Ku · Dustin Tran
  • 2018 Oral: Image Transformer »
    Niki Parmar · Ashish Vaswani · Jakob Uszkoreit · Lukasz Kaiser · Noam Shazeer · Alexander Ku · Dustin Tran
  • 2017 Workshop: Implicit Generative Models »
    Rajesh Ranganath · Ian Goodfellow · Dustin Tran · David Blei · Balaji Lakshminarayanan · Shakir Mohamed