Timezone: »
Towards a General Purpose CNN for Long Range Dependencies in $N$D
David Romero · David Knigge · Albert Gu · Erik Bekkers · Efstratios Gavves · Jakub Tomczak · Mark Hoogendoorn
The use of Convolutional Neural Networks (CNNs) is widespread in Deep Learning due to a range of desirable model properties which result in an efficient and effective machine learning framework. However, performant CNN architectures must be tailored to specific tasks in order to incorporate considerations such as the input length, resolution, and dimentionality. In this work, we overcome the need for problem-specific CNN architectures with our Continuous Convolutional Neural Network (CCNN): a single CNN architecture equipped with continuous convolutional kernels that can be used for tasks on data of arbitrary resolution, dimensionality and length without structural changes. Continuous convolutional kernels model long range dependencies at every layer, and remove the need for downsampling layers and task-dependent depths needed in current CNN architectures. We show the generality of our approach by applying the same CCNN to a wide set of tasks on sequential ($1D$) and visual data ($2D$). Our CCNN performs competitively and often outperforms the current state-of-the-art across all tasks considered.
Author Information
David Romero (Vrije Universiteit Amsterdam)
David Knigge (University of Amsterdam)
Albert Gu (Stanford University)
Erik Bekkers (University of Amsterdam)
Efstratios Gavves (University of Amsterdam )
Jakub Tomczak (Vrije Universiteit Amsterdam)
Mark Hoogendoorn (Vrije Universiteit Amsterdam)
More from the Same Authors
-
2023 Poster: Resurrecting Recurrent Neural Networks for Long Sequences »
Antonio Orvieto · Samuel Smith · Albert Gu · Anushan Fernando · Caglar Gulchere · Razvan Pascanu · Soham De -
2023 Poster: E$(n)$ Equivariant Message Passing Simplicial Networks »
Floor Eijkelboom · Rob Hesselink · Erik Bekkers -
2023 Poster: Graph Switching Dynamical Systems »
Yongtuo Liu · Sara Magliacane · Miltiadis (Miltos) Kofinas · Efstratios Gavves -
2023 Oral: Resurrecting Recurrent Neural Networks for Long Sequences »
Antonio Orvieto · Samuel Smith · Albert Gu · Anushan Fernando · Caglar Gulchere · Razvan Pascanu · Soham De -
2022 Poster: It’s Raw! Audio Generation with State-Space Models »
Karan Goel · Albert Gu · Chris Donahue · Christopher Re -
2022 Poster: Exploiting Redundancy: Separable Group Convolutional Networks on Lie Groups »
David Knigge · David Romero · Erik Bekkers -
2022 Spotlight: Exploiting Redundancy: Separable Group Convolutional Networks on Lie Groups »
David Knigge · David Romero · Erik Bekkers -
2022 Oral: It’s Raw! Audio Generation with State-Space Models »
Karan Goel · Albert Gu · Chris Donahue · Christopher Re -
2021 Poster: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections »
Ines Chami · Albert Gu · Dat P Nguyen · Christopher Re -
2021 Spotlight: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections »
Ines Chami · Albert Gu · Dat P Nguyen · Christopher Re -
2021 Poster: Neural Feature Matching in Implicit 3D Representations »
Yunlu Chen · Basura Fernando · Hakan Bilen · Thomas Mensink · Efstratios Gavves -
2021 Spotlight: Neural Feature Matching in Implicit 3D Representations »
Yunlu Chen · Basura Fernando · Hakan Bilen · Thomas Mensink · Efstratios Gavves -
2021 Poster: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2021 Spotlight: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2021 Poster: Spectral Smoothing Unveils Phase Transitions in Hierarchical Variational Autoencoders »
Adeel Pervez · Efstratios Gavves -
2021 Oral: Spectral Smoothing Unveils Phase Transitions in Hierarchical Variational Autoencoders »
Adeel Pervez · Efstratios Gavves -
2020 Poster: Attentive Group Equivariant Convolutional Networks »
David Romero · Erik Bekkers · Jakub Tomczak · Mark Hoogendoorn -
2020 Poster: Improving the Gating Mechanism of Recurrent Neural Networks »
Albert Gu · Caglar Gulcehre · Thomas Paine · Matthew Hoffman · Razvan Pascanu -
2019 Poster: Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations »
Tri Dao · Albert Gu · Matthew Eichhorn · Atri Rudra · Christopher Re -
2019 Oral: Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations »
Tri Dao · Albert Gu · Matthew Eichhorn · Atri Rudra · Christopher Re -
2019 Poster: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re -
2019 Oral: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re -
2018 Poster: Representation Tradeoffs for Hyperbolic Embeddings »
Frederic Sala · Christopher De Sa · Albert Gu · Christopher Re -
2018 Oral: Representation Tradeoffs for Hyperbolic Embeddings »
Frederic Sala · Christopher De Sa · Albert Gu · Christopher Re