Timezone: »
Non-convex online learning via algorithmic equivalence
Udaya Ghai · Zhou Lu · Elad Hazan
We study an algorithmic equivalence technique between nonconvex gradient descent and convex mirror descent. We start by looking at a harder problem of regret minimization in online non-convex optimization. We show that under certain geometric and smoothness conditions, online gradient descent applied to non-convex functions is an approximation of online mirror descent applied to convex functions under reparameterization. In continuous time, the gradient flow with this reparameterization was shown to be exactly equivalent to continuous-time mirror descent by Amid and Warmuth, but theory for the analogous discrete time algorithms is left as an open problem. We prove an $O(T^{\frac{2}{3}})$ regret bound for non-convex online gradient descent in this setting, answering this open problem. Our analysis is based on a new and simple algorithmic equivalence method.
Author Information
Udaya Ghai (Princeton)
Zhou Lu (Princeton University)
Elad Hazan (Princeton University and Google Brain)
More from the Same Authors
-
2021 : Robust online control with model misspecification »
Xinyi Chen · Udaya Ghai · Elad Hazan · Alexandre Megretsky -
2021 : A Boosting Approach to Reinforcement Learning »
Nataly Brukhim · Elad Hazan · Karan Singh -
2022 Poster: A Regret Minimization Approach to Multi-Agent Control »
Udaya Ghai · Udari Madhuhshani · Naomi Leonard · Elad Hazan -
2022 Spotlight: A Regret Minimization Approach to Multi-Agent Control »
Udaya Ghai · Udari Madhuhshani · Naomi Leonard · Elad Hazan -
2021 Poster: Towards Certifying L-infinity Robustness using Neural Networks with L-inf-dist Neurons »
Bohang Zhang · Tianle Cai · Zhou Lu · Di He · Liwei Wang -
2021 Poster: Boosting for Online Convex Optimization »
Elad Hazan · Karan Singh -
2021 Spotlight: Boosting for Online Convex Optimization »
Elad Hazan · Karan Singh -
2021 Spotlight: Towards Certifying L-infinity Robustness using Neural Networks with L-inf-dist Neurons »
Bohang Zhang · Tianle Cai · Zhou Lu · Di He · Liwei Wang -
2021 Poster: A Regret Minimization Approach to Iterative Learning Control »
Naman Agarwal · Elad Hazan · Anirudha Majumdar · Karan Singh -
2021 Spotlight: A Regret Minimization Approach to Iterative Learning Control »
Naman Agarwal · Elad Hazan · Anirudha Majumdar · Karan Singh -
2021 Tutorial: Online and non-stochastic control »
Elad Hazan · Karan Singh -
2021 : Online and non-stochastic control »
Elad Hazan -
2020 Poster: Boosting for Control of Dynamical Systems »
Naman Agarwal · Nataly Brukhim · Elad Hazan · Zhou Lu -
2019 Poster: Efficient Full-Matrix Adaptive Regularization »
Naman Agarwal · Brian Bullins · Xinyi Chen · Elad Hazan · Karan Singh · Cyril Zhang · Yi Zhang -
2019 Poster: Online Control with Adversarial Disturbances »
Naman Agarwal · Brian Bullins · Elad Hazan · Sham Kakade · Karan Singh -
2019 Oral: Efficient Full-Matrix Adaptive Regularization »
Naman Agarwal · Brian Bullins · Xinyi Chen · Elad Hazan · Karan Singh · Cyril Zhang · Yi Zhang -
2019 Oral: Online Control with Adversarial Disturbances »
Naman Agarwal · Brian Bullins · Elad Hazan · Sham Kakade · Karan Singh -
2019 Poster: Provably Efficient Maximum Entropy Exploration »
Elad Hazan · Sham Kakade · Karan Singh · Abby Van Soest -
2019 Oral: Provably Efficient Maximum Entropy Exploration »
Elad Hazan · Sham Kakade · Karan Singh · Abby Van Soest -
2018 Poster: On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization »
Sanjeev Arora · Nadav Cohen · Elad Hazan -
2018 Oral: On the Optimization of Deep Networks: Implicit Acceleration by Overparameterization »
Sanjeev Arora · Nadav Cohen · Elad Hazan -
2017 Poster: Efficient Regret Minimization in Non-Convex Games »
Elad Hazan · Karan Singh · Cyril Zhang -
2017 Talk: Efficient Regret Minimization in Non-Convex Games »
Elad Hazan · Karan Singh · Cyril Zhang