Timezone: »
We study online learning with bandit feedback across multiple tasks, with the goal of improving average performance across tasks if they are similar according to some natural task-similarity measure. As the first to target the adversarial setting, we design a unified meta-algorithm that yields setting-specific guarantees for two important cases: multi-armed bandits (MAB) and bandit linear optimization (BLO). For MAB, the meta-algorithm tunes the initialization, step-size, and entropy parameter of the Tsallis-entropy generalization of the well-known Exp3 method, with the task-averaged regret provably improving if the entropy of the distribution over estimated optima-in-hindsight is small. For BLO, we learn the initialization, step-size, and boundary-offset of online mirror descent (OMD) with self-concordant barrier regularizers, showing that task-averaged regret varies directly with a measure induced by these functions on the interior of the action space. Our adaptive guarantees rely on proving that unregularized follow-the-leader combined with multiplicative weights is enough to online learn a non-smooth and non-convex sequence of affine functions of Bregman divergences that upper-bound the regret of OMD.
Author Information
Nina Balcan (Carnegie Mellon University)

Maria-Florina Balcan is an Associate Professor in the School of Computer Science at Carnegie Mellon University. Her main research interests are machine learning and theoretical computer science. Her honors include the CMU SCS Distinguished Dissertation Award, an NSF CAREER Award, a Microsoft Faculty Research Fellowship, a Sloan Research Fellowship, and several paper awards. She has served as a Program Committee Co-chair for COLT 2014, a Program Committee Co-chair for ICML 2016, and a board member of the International Machine Learning Society.
Keegan Harris (Carnegie Mellon University)
Mikhail Khodak (CMU)
Steven Wu (Carnegie Mellon University)
More from the Same Authors
-
2021 : Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
· Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Stateful Strategic Regression »
Keegan Harris · Hoda Heidari · Steven Wu -
2021 : Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 : Private Multi-Task Learning: Formulation and Applications to Federated Learning »
Shengyuan Hu · Steven Wu · Virginia Smith -
2021 : Iterative Methods for Private Synthetic Data: Unifying Framework and New Methods »
Terrance Liu · Giuseppe Vietri · Steven Wu -
2021 : Understanding Clipped FedAvg: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Steven Wu · Mingyi Hong -
2021 : Improved Privacy Filters and Odometers: Time-Uniform Bounds in Privacy Composition »
Justin Whitehouse · Aaditya Ramdas · Ryan Rogers · Steven Wu -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Stateful Strategic Regression »
Keegan Harris · Hoda Heidari · Steven Wu -
2021 : Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 : Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2021 : Scalable Algorithms for Nonlinear Causal Inference »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2021 : Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2023 : Complementing a Policy with a Different Observation Space »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2023 : Adaptive Principal Component Regression with Applications to Panel Data »
Anish Agarwal · Keegan Harris · Justin Whitehouse · Steven Wu -
2023 : Strategyproof Decision-Making in Panel Data Settings and Beyond »
Keegan Harris · Anish Agarwal · Chara Podimata · Steven Wu -
2023 : Learning-augmented private algorithms for multiple quantile release »
Mikhail Khodak · Kareem Amin · Travis Dick · Sergei Vassilvitskii -
2023 : Learning with Explanation Constraints »
Rattana Pukdee · Dylan Sam · Nina Balcan · Pradeep Ravikumar -
2023 : Strategic Apple Tasting »
Keegan Harris · Chara Podimata · Steven Wu -
2023 : Strategyproof Decision-Making in Panel Data Settings and Beyond »
Keegan Harris · Anish Agarwal · Chara Podimata · Steven Wu -
2023 : Complementing a Policy with a Different Observation Space »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2023 : Learning Shared Safety Constraints from Multi-task Demonstrations »
Konwoo Kim · Gokul Swamy · Zuxin Liu · Ding Zhao · Sanjiban Choudhury · Steven Wu -
2023 : Strategic Apple Tasting »
Keegan Harris · Chara Podimata · Steven Wu -
2023 : Learning Shared Safety Constraints from Multi-task Demonstrations »
Konwoo Kim · Gokul Swamy · Zuxin Liu · Ding Zhao · Sanjiban Choudhury · Steven Wu -
2023 Oral: Cross-Modal Fine-Tuning: Align then Refine »
Junhong Shen · Liam Li · Lucio Dery · Corey Staten · Mikhail Khodak · Graham Neubig · Ameet Talwalkar -
2023 Poster: Cross-Modal Fine-Tuning: Align then Refine »
Junhong Shen · Liam Li · Lucio Dery · Corey Staten · Mikhail Khodak · Graham Neubig · Ameet Talwalkar -
2023 Poster: Fully-Adaptive Composition in Differential Privacy »
Justin Whitehouse · Aaditya Ramdas · Ryan Rogers · Steven Wu -
2023 Oral: Nonparametric Extensions of Randomized Response for Private Confidence Sets »
Ian Waudby-Smith · Steven Wu · Aaditya Ramdas -
2023 Poster: Learning-augmented private algorithms for multiple quantile release »
Mikhail Khodak · Kareem Amin · Travis Dick · Sergei Vassilvitskii -
2023 Poster: Nonparametric Extensions of Randomized Response for Private Confidence Sets »
Ian Waudby-Smith · Steven Wu · Aaditya Ramdas -
2023 Poster: Inverse Reinforcement Learning without Reinforcement Learning »
Gokul Swamy · David Wu · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2023 Poster: Generating Private Synthetic Data with Genetic Algorithms »
Terrance Liu · Jingwu Tang · Giuseppe Vietri · Steven Wu -
2022 Poster: Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2022 Poster: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Poster: Causal Imitation Learning under Temporally Correlated Noise »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 Spotlight: Constrained Variational Policy Optimization for Safe Reinforcement Learning »
Zuxin Liu · Zhepeng Cen · Vladislav Isenbaev · Wei Liu · Steven Wu · Bo Li · Ding Zhao -
2022 Spotlight: Information Discrepancy in Strategic Learning »
Yahav Bechavod · Chara Podimata · Steven Wu · Juba Ziani -
2022 Oral: Causal Imitation Learning under Temporally Correlated Noise »
Gokul Swamy · Sanjiban Choudhury · James Bagnell · Steven Wu -
2022 Poster: Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2022 Poster: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2022 Poster: Improved Regret for Differentially Private Exploration in Linear MDP »
Dung Ngo · Giuseppe Vietri · Steven Wu -
2022 Poster: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2022 Spotlight: Understanding Clipping for Federated Learning: Convergence and Client-Level Differential Privacy »
xinwei zhang · Xiangyi Chen · Mingyi Hong · Steven Wu · Jinfeng Yi -
2022 Spotlight: Improved Regret for Differentially Private Exploration in Linear MDP »
Dung Ngo · Giuseppe Vietri · Steven Wu -
2022 Spotlight: Strategic Instrumental Variable Regression: Recovering Causal Relationships From Strategic Responses »
Keegan Harris · Dung Ngo · Logan Stapleton · Hoda Heidari · Steven Wu -
2022 Spotlight: Personalization Improves Privacy-Accuracy Tradeoffs in Federated Learning »
Alberto Bietti · Chen-Yu Wei · Miroslav Dudik · John Langford · Steven Wu -
2021 Poster: Leveraging Public Data for Practical Private Query Release »
Terrance Liu · Giuseppe Vietri · Thomas Steinke · Jonathan Ullman · Steven Wu -
2021 Spotlight: Leveraging Public Data for Practical Private Query Release »
Terrance Liu · Giuseppe Vietri · Thomas Steinke · Jonathan Ullman · Steven Wu -
2021 Poster: Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 Spotlight: Of Moments and Matching: A Game-Theoretic Framework for Closing the Imitation Gap »
Gokul Swamy · Sanjiban Choudhury · J. Bagnell · Steven Wu -
2021 Poster: Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju -
2021 Poster: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 Spotlight: Incentivizing Compliance with Algorithmic Instruments »
Dung Ngo · Logan Stapleton · Vasilis Syrgkanis · Steven Wu -
2021 Spotlight: Towards the Unification and Robustness of Perturbation and Gradient Based Explanations »
Sushant Agarwal · Shahin Jabbari · Chirag Agarwal · Sohini Upadhyay · Steven Wu · Hima Lakkaraju -
2020 : Lightning Talks Session 2 »
Jichan Chung · Saurav Prakash · Mikhail Khodak · Ravi Rahman · Vaikkunth Mugunthan · xinwei zhang · Hossein Hosseini -
2020 : 2.7 A Simple Setting for Understanding Neural Architecture Search with Weight-Sharing »
Mikhail Khodak -
2020 Poster: Refined bounds for algorithm configuration: The knife-edge of dual class approximability »
Nina Balcan · Tuomas Sandholm · Ellen Vitercik -
2020 Poster: A Sample Complexity Separation between Non-Convex and Convex Meta-Learning »
Nikunj Umesh Saunshi · Yi Zhang · Mikhail Khodak · Sanjeev Arora -
2019 Poster: A Theoretical Analysis of Contrastive Unsupervised Representation Learning »
Nikunj Umesh Saunshi · Orestis Plevrakis · Sanjeev Arora · Mikhail Khodak · Hrishikesh Khandeparkar -
2019 Oral: A Theoretical Analysis of Contrastive Unsupervised Representation Learning »
Nikunj Umesh Saunshi · Orestis Plevrakis · Sanjeev Arora · Mikhail Khodak · Hrishikesh Khandeparkar -
2019 Poster: Provable Guarantees for Gradient-Based Meta-Learning »
Nina Balcan · Mikhail Khodak · Ameet Talwalkar -
2019 Oral: Provable Guarantees for Gradient-Based Meta-Learning »
Nina Balcan · Mikhail Khodak · Ameet Talwalkar -
2018 Poster: Learning to Branch »
Nina Balcan · Travis Dick · Tuomas Sandholm · Ellen Vitercik -
2018 Oral: Learning to Branch »
Nina Balcan · Travis Dick · Tuomas Sandholm · Ellen Vitercik -
2018 Tutorial: Machine Learning in Automated Mechanism Design for Pricing and Auctions »
Nina Balcan · Tuomas Sandholm · Ellen Vitercik -
2017 Poster: Differentially Private Clustering in High-Dimensional Euclidean Spaces »
Nina Balcan · Travis Dick · Yingyu Liang · Wenlong Mou · Hongyang Zhang -
2017 Talk: Differentially Private Clustering in High-Dimensional Euclidean Spaces »
Nina Balcan · Travis Dick · Yingyu Liang · Wenlong Mou · Hongyang Zhang -
2017 Poster: Risk Bounds for Transferring Representations With and Without Fine-Tuning »
Daniel McNamara · Nina Balcan -
2017 Talk: Risk Bounds for Transferring Representations With and Without Fine-Tuning »
Daniel McNamara · Nina Balcan