Timezone: »
Deep neural networks have achieved outstanding success in many tasks ranging from computer vision, to natural language processing, and robotics. However such models are still pale in their ability to understand the world around us, as well as generalizing and adapting to new tasks or environments. One possible solution to this problem are models that comprehend causality, since such models can reason about the connections between causal variables and the effect of intervening on them. However, existing causal algorithms are typically not scalable nor applicable to highly nonlinear settings, and they also assume that the causal variables are meaningful and given. Recently, there has been an increased interest and research activity at the intersection of causality and deep learning in order to tackle the above challenges, which use deep learning for the benefit of causal algorithms and vice versa. This tutorial is aimed at introducing the fundamental concepts of causality and deep learning for both audiences, providing an overview of recent works, as well as present synergies, challenges and opportunities for research in both fields.
Mon 6:30 a.m. - 7:00 a.m.
|
Introduction and Background
(
Talk
)
SlidesLive Video » |
Nan Rosemary Ke 🔗 |
Mon 7:00 a.m. - 7:40 a.m.
|
Deep Learning for Causality
(
Talk
)
SlidesLive Video » |
Stefan Bauer 🔗 |
Mon 7:40 a.m. - 8:20 a.m.
|
Causality for Deep Learning
(
Talk
)
SlidesLive Video » |
Nan Rosemary Ke 🔗 |
Mon 8:20 a.m. - 8:30 a.m.
|
Q&A
SlidesLive Video » We will be taking questions from virtual attendees in rocket chat and from the in-person audience. During the tutorial we will continuously answer questions on rocket chat and stay online after the tutorial as well. |
Nan Rosemary Ke · Stefan Bauer 🔗 |
Author Information
Nan Rosemary Ke (Deepmind, Mila)
Stefan Bauer (KTH Stockholm)
More from the Same Authors
-
2021 : Representation Learning for Out-of-distribution Generalization in Downstream Tasks »
Frederik Träuble · Andrea Dittadi · Manuel Wuthrich · Felix Widmaier · Peter V Gehler · Ole Winther · Francesco Locatello · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer -
2021 : Representation Learning for Out-of-distribution Generalization in Downstream Tasks »
Frederik Träuble · Andrea Dittadi · Manuel Wüthrich · Felix Widmaier · Peter Gehler · Ole Winther · Francesco Locatello · Olivier Bachem · Bernhard Schölkopf · Stefan Bauer -
2022 : Latent Variable Models for Bayesian Causal Discovery »
Jithendaraa Subramanian · Jithendaraa Subramanian · Yashas Annadani · Ivaxi Sheth · Stefan Bauer · Derek Nowrouzezahrai · Samira Ebrahimi Kahou -
2022 : On the Generalization and Adaption Performance of Causal Models »
Nino Scherrer · Anirudh Goyal · Stefan Bauer · Yoshua Bengio · Rosemary Nan Ke -
2023 Poster: DRCFS: Doubly Robust Causal Feature Selection »
Francesco Quinzan · Ashkan Soleymani · Patrick Jaillet · Cristian R. Rojas · Stefan Bauer -
2023 Poster: DiscoBAX - Discovery of optimal intervention sets in genomic experiment design »
Clare Lyle · Arash Mehrjou · Pascal Notin · Andrew Jesson · Stefan Bauer · Yarin Gal · Patrick Schwab -
2023 Poster: Diffusion Based Representation Learning »
Korbinian Abstreiter · Sarthak Mittal · Stefan Bauer · Bernhard Schölkopf · Arash Mehrjou -
2023 Poster: Differentiable Multi-Target Causal Bayesian Experimental Design »
Panagiotis Tigas · Yashas Annadani · Desi Ivanova · Andrew Jesson · Yarin Gal · Adam Foster · Stefan Bauer -
2022 Workshop: Beyond Bayes: Paths Towards Universal Reasoning Systems »
Zenna Tavares · Emily Mackevicius · Elias Bingham · Nan Rosemary Ke · Talia Ringer · Armando Solar-Lezama · Nada Amin · John Krakauer · Robert O Ness · Alexis Avedisian -
2022 Poster: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Spotlight: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Poster: Adaptive Gaussian Process Change Point Detection »
Edoardo Caldarelli · Philippe Wenk · Stefan Bauer · Andreas Krause -
2022 Spotlight: Adaptive Gaussian Process Change Point Detection »
Edoardo Caldarelli · Philippe Wenk · Stefan Bauer · Andreas Krause -
2022 : Q&A »
Nan Rosemary Ke · Stefan Bauer -
2022 : Causality for Deep Learning »
Nan Rosemary Ke -
2022 : Deep Learning for Causality »
Stefan Bauer -
2022 : Introduction and Background »
Nan Rosemary Ke -
2021 Poster: Function Contrastive Learning of Transferable Meta-Representations »
Muhammad Waleed Gondal · Shruti Joshi · Nasim Rahaman · Stefan Bauer · Manuel Wuthrich · Bernhard Schölkopf -
2021 Spotlight: Function Contrastive Learning of Transferable Meta-Representations »
Muhammad Waleed Gondal · Shruti Joshi · Nasim Rahaman · Stefan Bauer · Manuel Wuthrich · Bernhard Schölkopf -
2020 Workshop: Inductive Biases, Invariances and Generalization in Reinforcement Learning »
Anirudh Goyal · Rosemary Nan Ke · Jane Wang · Stefan Bauer · Theophane Weber · Fabio Viola · Bernhard Schölkopf · Stefan Bauer