Timezone: »
Offline reinforcement learning (RL) extends the paradigm of classical RL algorithms to purely learning from static datasets, without interacting with the underlying environment during the learning process. A key challenge of offline RL is the instability of policy training, caused by the mismatch between the distribution of the offline data and the undiscounted stationary state-action distribution of the learned policy. To avoid the detrimental impact of distribution mismatch, we regularize the undiscounted stationary distribution of the current policy towards the offline data during the policy optimization process. Further, we train a dynamics model to both implement this regularization and better estimate the stationary distribution of the current policy, reducing the error induced by distribution mismatch. On a wide range of continuous-control offline RL datasets, our method indicates competitive performance, which validates our algorithm. The code is publicly available.
Author Information
Shentao Yang (University of Texas at Austin)
Yihao Feng (The University of Texas at Austin)
Shujian Zhang (UT Austin)
Mingyuan Zhou (University of Texas at Austin)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Regularizing a Model-based Policy Stationary Distribution to Stabilize Offline Reinforcement Learning »
Tue. Jul 19th 06:55 -- 07:00 PM Room Room 309
More from the Same Authors
-
2023 Poster: Learning to Jump: Thinning and Thickening Latent Counts for Generative Modeling »
Tianqi Chen · Mingyuan Zhou -
2023 Poster: Prototype-oriented unsupervised anomaly detection for multivariate time series »
yuxin li · Wenchao Chen · Bo Chen · Dongsheng Wang · Long Tian · Mingyuan Zhou -
2023 Poster: POUF: Prompt-Oriented Unsupervised Fine-tuning for Large Pre-trained Models »
Korawat Tanwisuth · Shujian Zhang · Huangjie Zheng · Pengcheng He · Mingyuan Zhou -
2023 Poster: Bayesian Progressive Deep Topic Model with Knowledge Informed Textual Data Coarsening Process »
Zhibin Duan · Xinyang Liu · Yudi Su · Yishi Xu · Bo Chen · Mingyuan Zhou -
2022 Poster: Deep Variational Graph Convolutional Recurrent Network for Multivariate Time Series Anomaly Detection »
Wenchao Chen · Long Tian · Bo Chen · Liang Dai · Zhibin Duan · Mingyuan Zhou -
2022 Poster: Bayesian Deep Embedding Topic Meta-Learner »
Zhibin Duan · Yishi Xu · Jianqiao Sun · Bo Chen · Wenchao Chen · CHAOJIE WANG · Mingyuan Zhou -
2022 Spotlight: Bayesian Deep Embedding Topic Meta-Learner »
Zhibin Duan · Yishi Xu · Jianqiao Sun · Bo Chen · Wenchao Chen · CHAOJIE WANG · Mingyuan Zhou -
2022 Spotlight: Deep Variational Graph Convolutional Recurrent Network for Multivariate Time Series Anomaly Detection »
Wenchao Chen · Long Tian · Bo Chen · Liang Dai · Zhibin Duan · Mingyuan Zhou -
2021 Poster: Bayesian Attention Belief Networks »
Shujian Zhang · Xinjie Fan · Bo Chen · Mingyuan Zhou -
2021 Spotlight: Bayesian Attention Belief Networks »
Shujian Zhang · Xinjie Fan · Bo Chen · Mingyuan Zhou -
2021 Poster: Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network »
Zhibin Duan · Dongsheng Wang · Bo Chen · CHAOJIE WANG · Wenchao Chen · yewen li · Jie Ren · Mingyuan Zhou -
2021 Poster: ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables »
Alek Dimitriev · Mingyuan Zhou -
2021 Spotlight: ARMS: Antithetic-REINFORCE-Multi-Sample Gradient for Binary Variables »
Alek Dimitriev · Mingyuan Zhou -
2021 Spotlight: Sawtooth Factorial Topic Embeddings Guided Gamma Belief Network »
Zhibin Duan · Dongsheng Wang · Bo Chen · CHAOJIE WANG · Wenchao Chen · yewen li · Jie Ren · Mingyuan Zhou -
2020 Poster: Accountable Off-Policy Evaluation With Kernel Bellman Statistics »
Yihao Feng · Tongzheng Ren · Ziyang Tang · Qiang Liu -
2020 Poster: Thompson Sampling via Local Uncertainty »
Zhendong Wang · Mingyuan Zhou -
2020 Poster: Bayesian Graph Neural Networks with Adaptive Connection Sampling »
Arman Hasanzadeh · Ehsan Hajiramezanali · Shahin Boluki · Mingyuan Zhou · Nick Duffield · Krishna Narayanan · Xiaoning Qian -
2020 Poster: Recurrent Hierarchical Topic-Guided RNN for Language Generation »
Dandan Guo · Bo Chen · Ruiying Lu · Mingyuan Zhou -
2019 Poster: ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables »
Mingzhang Yin · Yuguang Yue · Mingyuan Zhou -
2019 Oral: ARSM: Augment-REINFORCE-Swap-Merge Estimator for Gradient Backpropagation Through Categorical Variables »
Mingzhang Yin · Yuguang Yue · Mingyuan Zhou -
2019 Poster: Convolutional Poisson Gamma Belief Network »
CHAOJIE WANG · Bo Chen · SUCHENG XIAO · Mingyuan Zhou -
2019 Poster: Locally Private Bayesian Inference for Count Models »
Aaron Schein · Steven Wu · Alexandra Schofield · Mingyuan Zhou · Hanna Wallach -
2019 Oral: Convolutional Poisson Gamma Belief Network »
CHAOJIE WANG · Bo Chen · SUCHENG XIAO · Mingyuan Zhou -
2019 Oral: Locally Private Bayesian Inference for Count Models »
Aaron Schein · Steven Wu · Alexandra Schofield · Mingyuan Zhou · Hanna Wallach -
2018 Poster: Inter and Intra Topic Structure Learning with Word Embeddings »
He Zhao · Lan Du · Wray Buntine · Mingyuan Zhou -
2018 Oral: Inter and Intra Topic Structure Learning with Word Embeddings »
He Zhao · Lan Du · Wray Buntine · Mingyuan Zhou -
2018 Poster: Semi-Implicit Variational Inference »
Mingzhang Yin · Mingyuan Zhou -
2018 Oral: Semi-Implicit Variational Inference »
Mingzhang Yin · Mingyuan Zhou -
2017 Poster: Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC »
Yulai Cong · Bo Chen · Hongwei Liu · Mingyuan Zhou -
2017 Talk: Deep Latent Dirichlet Allocation with Topic-Layer-Adaptive Stochastic Gradient Riemannian MCMC »
Yulai Cong · Bo Chen · Hongwei Liu · Mingyuan Zhou