Timezone: »
A major challenge in studying robustness in deep learning is defining the set of meaningless perturbations to which a given Neural Network (NN) should be invariant. Most work on robustness implicitly uses a human as the reference model to define such perturbations. Our work offers a new view on robustness by using another reference NN to define the set of perturbations a given NN should be invariant to, thus generalizing the reliance on a reference human NN to any NN. This makes measuring robustness equivalent to measuring the extent to which two NNs share invariances, for which we propose a measure called STIR. STIR re-purposes existing representation similarity measures to make them suitable for measuring shared invariances. Using our measure, we are able to gain insights into how shared invariances vary with changes in weight initialization, architecture, loss functions, and training dataset. Our implementation is available at: https://github.com/nvedant07/STIR
Author Information
Vedant Nanda (University of Maryland & MPI-SWS)
Till Speicher (MPI-SWS)
Camila Kolling (PUCRS)
John P Dickerson (Arthur AI & Univ. of Maryland)
Krishna Gummadi (MPI-SWS)
Adrian Weller (University of Cambridge, Alan Turing Institute)

Adrian Weller is Programme Director for AI at The Alan Turing Institute, the UK national institute for data science and AI, and is a Turing AI Fellow leading work on trustworthy Machine Learning (ML). He is a Principal Research Fellow in ML at the University of Cambridge, and at the Leverhulme Centre for the Future of Intelligence where he is Programme Director for Trust and Society. His interests span AI, its commercial applications and helping to ensure beneficial outcomes for society. Previously, Adrian held senior roles in finance. He received a PhD in computer science from Columbia University, and an undergraduate degree in mathematics from Trinity College, Cambridge.
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Measuring Representational Robustness of Neural Networks Through Shared Invariances »
Thu. Jul 21st through Fri the 22nd Room Hall E #427
More from the Same Authors
-
2021 : Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates »
· Dan Ley · Umang Bhatt · Adrian Weller -
2021 : Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates »
Dan Ley · Umang Bhatt · Adrian Weller -
2021 : On the Fairness of Causal Algorithmic Recourse »
Julius von Kügelgen · Amir-Hossein Karimi · Umang Bhatt · Isabel Valera · Adrian Weller · Bernhard Schölkopf · Amir-Hossein Karimi -
2021 : Towards Principled Disentanglement for Domain Generalization »
Hanlin Zhang · Yi-Fan Zhang · Weiyang Liu · Adrian Weller · Bernhard Schölkopf · Eric Xing -
2021 : Diverse and Amortised Counterfactual Explanations for Uncertainty Estimates »
Dan Ley · Umang Bhatt · Adrian Weller -
2021 : CrossWalk: Fairness-enhanced Node Representation Learning »
Ahmad Khajehnejad · Moein Khajehnejad · Krishna Gummadi · Adrian Weller · Baharan Mirzasoleiman -
2021 : PreferenceNet: Encoding Human Preferences in Auction Design »
Neehar Peri · Michael Curry · Samuel Dooley · John P Dickerson -
2022 : Centralized vs Individual Models for Decision Making in Interconnected Infrastructure »
Stephanie Allen · John P Dickerson · Steven Gabriel -
2022 : Perspectives on Incorporating Expert Feedback into Model Updates »
Valerie Chen · Umang Bhatt · Hoda Heidari · Adrian Weller · Ameet Talwalkar -
2022 : Planning to Fairly Allocate: Probabilistic Fairness in the Restless Bandit Setting »
Christine Herlihy · Aviva Prins · Aravind Srinivasan · John P Dickerson -
2023 : Algorithms for Optimal Adaptation of Diffusion Models to Reward Functions »
Krishnamurthy Dvijotham · Shayegan Omidshafiei · Kimin Lee · Katie Collins · Deepak Ramachandran · Adrian Weller · Mohammad Ghavamzadeh · Milad Nasresfahani · Ying Fan · Jeremiah Liu -
2023 : The Neuro-Symbolic Inverse Planning Engine (NIPE): Modeling probabilistic social inferences from linguistic inputs »
Lance Ying · Katie Collins · Megan Wei · Cedegao Zhang · Tan Zhi-Xuan · Adrian Weller · Josh Tenenbaum · Catherine Wong -
2023 Oral: Simplex Random Features »
Isaac Reid · Krzysztof Choromanski · Valerii Likhosherstov · Adrian Weller -
2023 Poster: Efficient Graph Field Integrators Meet Point Clouds »
Krzysztof Choromanski · Arijit Sehanobish · Han Lin · YUNFAN ZHAO · Eli Berger · Tetiana Parshakova · Qingkai Pan · David Watkins · Tianyi Zhang · Valerii Likhosherstov · Somnath Basu Roy Chowdhury · Kumar Avinava Dubey · Deepali Jain · Tamas Sarlos · Snigdha Chaturvedi · Adrian Weller -
2023 Poster: Simplex Random Features »
Isaac Reid · Krzysztof Choromanski · Valerii Likhosherstov · Adrian Weller -
2023 Poster: Generalized Reductions: Making any Hierarchical Clustering Fair and Balanced with Low Cost »
Marina Knittel · Max Springer · John P Dickerson · MohammadTaghi Hajiaghayi -
2023 Poster: Is Learning Summary Statistics Necessary for Likelihood-free Inference? »
Yanzhi Chen · Michael Gutmann · Adrian Weller -
2022 : Spotlight Presentations »
Adrian Weller · Osbert Bastani · Jake Snell · Tal Schuster · Stephen Bates · Zhendong Wang · Margaux Zaffran · Danielle Rasooly · Varun Babbar -
2022 Workshop: Workshop on Human-Machine Collaboration and Teaming »
Umang Bhatt · Katie Collins · Maria De-Arteaga · Bradley Love · Adrian Weller -
2022 Poster: From block-Toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked Transformers »
Krzysztof Choromanski · Han Lin · Haoxian Chen · Tianyi Zhang · Arijit Sehanobish · Valerii Likhosherstov · Jack Parker-Holder · Tamas Sarlos · Adrian Weller · Thomas Weingarten -
2022 Poster: Cliff Diving: Exploring Reward Surfaces in Reinforcement Learning Environments »
Ryan Sullivan · Jordan Terry · Benjamin Black · John P Dickerson -
2022 Spotlight: Cliff Diving: Exploring Reward Surfaces in Reinforcement Learning Environments »
Ryan Sullivan · Jordan Terry · Benjamin Black · John P Dickerson -
2022 Spotlight: From block-Toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked Transformers »
Krzysztof Choromanski · Han Lin · Haoxian Chen · Tianyi Zhang · Arijit Sehanobish · Valerii Likhosherstov · Jack Parker-Holder · Tamas Sarlos · Adrian Weller · Thomas Weingarten -
2022 Poster: Certified Neural Network Watermarks with Randomized Smoothing »
Arpit Bansal · Ping-yeh Chiang · Michael Curry · Rajiv Jain · Curtis Wigington · Varun Manjunatha · John P Dickerson · Tom Goldstein -
2022 Spotlight: Certified Neural Network Watermarks with Randomized Smoothing »
Arpit Bansal · Ping-yeh Chiang · Michael Curry · Rajiv Jain · Curtis Wigington · Varun Manjunatha · John P Dickerson · Tom Goldstein -
2021 Poster: Debiasing a First-order Heuristic for Approximate Bi-level Optimization »
Valerii Likhosherstov · Xingyou Song · Krzysztof Choromanski · Jared Quincy Davis · Adrian Weller -
2021 Spotlight: Debiasing a First-order Heuristic for Approximate Bi-level Optimization »
Valerii Likhosherstov · Xingyou Song · Krzysztof Choromanski · Jared Quincy Davis · Adrian Weller -
2021 Poster: Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks »
Avi Schwarzschild · Micah Goldblum · Arjun Gupta · John P Dickerson · Tom Goldstein -
2021 Spotlight: Just How Toxic is Data Poisoning? A Unified Benchmark for Backdoor and Data Poisoning Attacks »
Avi Schwarzschild · Micah Goldblum · Arjun Gupta · John P Dickerson · Tom Goldstein -
2020 Workshop: 5th ICML Workshop on Human Interpretability in Machine Learning (WHI) »
Adrian Weller · Alice Xiang · Amit Dhurandhar · Been Kim · Dennis Wei · Kush Varshney · Umang Bhatt -
2020 Poster: Stochastic Flows and Geometric Optimization on the Orthogonal Group »
Krzysztof Choromanski · David Cheikhi · Jared Quincy Davis · Valerii Likhosherstov · Achille Nazaret · Achraf Bahamou · Xingyou Song · Mrugank Akarte · Jack Parker-Holder · Jacob Bergquist · Yuan Gao · Aldo Pacchiano · Tamas Sarlos · Adrian Weller · Vikas Sindhwani -
2020 Poster: A Pairwise Fair and Community-preserving Approach to k-Center Clustering »
Brian Brubach · Darshan Chakrabarti · John P Dickerson · Samir Khuller · Aravind Srinivasan · Leonidas Tsepenekas -
2020 Poster: Measuring Non-Expert Comprehension of Machine Learning Fairness Metrics »
Debjani Saha · Candice Schumann · Duncan McElfresh · John P Dickerson · Michelle Mazurek · Michael Tschantz -
2019 Workshop: Human In the Loop Learning (HILL) »
Xin Wang · Xin Wang · Fisher Yu · Shanghang Zhang · Joseph Gonzalez · Yangqing Jia · Sarah Bird · Kush Varshney · Been Kim · Adrian Weller -
2019 Poster: Unifying Orthogonal Monte Carlo Methods »
Krzysztof Choromanski · Mark Rowland · Wenyu Chen · Adrian Weller -
2019 Poster: On the Long-term Impact of Algorithmic Decision Policies: Effort Unfairness and Feature Segregation through Social Learning »
Hoda Heidari · Vedant Nanda · Krishna Gummadi -
2019 Oral: On the Long-term Impact of Algorithmic Decision Policies: Effort Unfairness and Feature Segregation through Social Learning »
Hoda Heidari · Vedant Nanda · Krishna Gummadi -
2019 Oral: Unifying Orthogonal Monte Carlo Methods »
Krzysztof Choromanski · Mark Rowland · Wenyu Chen · Adrian Weller -
2019 Poster: TibGM: A Transferable and Information-Based Graphical Model Approach for Reinforcement Learning »
Tameem Adel · Adrian Weller -
2019 Oral: TibGM: A Transferable and Information-Based Graphical Model Approach for Reinforcement Learning »
Tameem Adel · Adrian Weller -
2018 Poster: Blind Justice: Fairness with Encrypted Sensitive Attributes »
Niki Kilbertus · Adria Gascon · Matt Kusner · Michael Veale · Krishna Gummadi · Adrian Weller -
2018 Oral: Blind Justice: Fairness with Encrypted Sensitive Attributes »
Niki Kilbertus · Adria Gascon · Matt Kusner · Michael Veale · Krishna Gummadi · Adrian Weller -
2018 Poster: Bucket Renormalization for Approximate Inference »
Sungsoo Ahn · Michael Chertkov · Adrian Weller · Jinwoo Shin -
2018 Oral: Bucket Renormalization for Approximate Inference »
Sungsoo Ahn · Michael Chertkov · Adrian Weller · Jinwoo Shin -
2018 Poster: Structured Evolution with Compact Architectures for Scalable Policy Optimization »
Krzysztof Choromanski · Mark Rowland · Vikas Sindhwani · Richard E Turner · Adrian Weller -
2018 Poster: Discovering Interpretable Representations for Both Deep Generative and Discriminative Models »
Tameem Adel · Zoubin Ghahramani · Adrian Weller -
2018 Oral: Discovering Interpretable Representations for Both Deep Generative and Discriminative Models »
Tameem Adel · Zoubin Ghahramani · Adrian Weller -
2018 Oral: Structured Evolution with Compact Architectures for Scalable Policy Optimization »
Krzysztof Choromanski · Mark Rowland · Vikas Sindhwani · Richard E Turner · Adrian Weller -
2017 Workshop: Reliable Machine Learning in the Wild »
Dylan Hadfield-Menell · Jacob Steinhardt · Adrian Weller · Smitha Milli -
2017 : A. Weller, "Challenges for Transparency" »
Adrian Weller -
2017 Workshop: Workshop on Human Interpretability in Machine Learning (WHI) »
Kush Varshney · Adrian Weller · Been Kim · Dmitry Malioutov -
2017 Poster: Lost Relatives of the Gumbel Trick »
Matej Balog · Nilesh Tripuraneni · Zoubin Ghahramani · Adrian Weller -
2017 Talk: Lost Relatives of the Gumbel Trick »
Matej Balog · Nilesh Tripuraneni · Zoubin Ghahramani · Adrian Weller