Timezone: »

 
Spotlight
TPC: Transformation-Specific Smoothing for Point Cloud Models
Wenda Chu · Linyi Li · Bo Li

Tue Jul 19 08:50 AM -- 08:55 AM (PDT) @ Hall G

Point cloud models with neural network architectures have achieved great success and been widely used in safety-critical applications, such as Lidar-based recognition systems in autonomous vehicles. However, such models are shown vulnerable against adversarial attacks which aim to apply stealthy semantic transformations such as rotation and tapering to mislead model predictions. In this paper, we propose a transformation-specific smoothing framework TPC, which provides tight and scalable robustness guarantees for point cloud models against semantic transformation attacks. We first categorize common 3D transformations into two categories: composable (e.g., rotation) and indirectly composable (e.g., tapering), and we present generic robustness certification strategies for both categories. We then specify unique certification protocols for a range of specific semantic transformations and derive strong robustness guarantees. Extensive experiments on several common 3D transformations show that TPC significantly outperforms the state of the art. For example, our framework boosts the certified accuracy against twisting transformation along z-axis (within ±20°) from 20.3% to 83.8%. Codes and models are available at https://github.com/Qianhewu/Point-Cloud-Smoothing.

Author Information

Wenda Chu (Tsinghua University)
Linyi Li (UIUC)
Bo Li (UIUC)
Bo Li

Dr. Bo Li is an assistant professor in the Department of Computer Science at the University of Illinois at Urbana–Champaign. She is the recipient of the IJCAI Computers and Thought Award, Alfred P. Sloan Research Fellowship, AI’s 10 to Watch, NSF CAREER Award, MIT Technology Review TR-35 Award, Dean's Award for Excellence in Research, C.W. Gear Outstanding Junior Faculty Award, Intel Rising Star award, Symantec Research Labs Fellowship, Rising Star Award, Research Awards from Tech companies such as Amazon, Facebook, Intel, IBM, and eBay, and best paper awards at several top machine learning and security conferences. Her research focuses on both theoretical and practical aspects of trustworthy machine learning, which is at the intersection of machine learning, security, privacy, and game theory. She has designed several scalable frameworks for trustworthy machine learning and privacy-preserving data publishing. Her work has been featured by major publications and media outlets such as Nature, Wired, Fortune, and New York Times.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors