Timezone: »
Predicting how a drug-like molecule binds to a specific protein target is a core problem in drug discovery. An extremely fast computational binding method would enable key applications such as fast virtual screening or drug engineering. Existing methods are computationally expensive as they rely on heavy candidate sampling coupled with scoring, ranking, and fine-tuning steps. We challenge this paradigm with EquiBind, an SE(3)-equivariant geometric deep learning model performing direct-shot prediction of both i) the receptor binding location (blind docking) and ii) the ligand's bound pose and orientation. EquiBind achieves significant speed-ups and better quality compared to traditional and recent baselines. Further, we show extra improvements when coupling it with existing fine-tuning techniques at the cost of increased running time. Finally, we propose a novel and fast fine-tuning model that adjusts torsion angles of a ligand's rotatable bonds based on closed form global minima of the von Mises angular distance to a given input atomic point cloud, avoiding previous expensive differential evolution strategies for energy minimization.
Author Information
Hannes Stärk (MIT)

I am a PhD student at MIT with an M.Sc. Informatics from TU Munich. I work on graph/geometric machine learning and self-supervised learning, often with applications to proteins and smaller molecules. At MIT CSAIL I am advised by Prof. Tommi Jaakkola and Prof. Regina Barzilay.
Octavian Ganea (MIT)
Lagnajit Pattanaik (Massachusetts Institute of Technology)
Regina Barzilay (MIT CSAIL)

Regina Barzilay is an Israeli-American computer scientist. She is a professor at the Massachusetts Institute of Technology and a faculty lead for artificial intelligence at the MIT Jameel Clinic. Her research interests are in natural language processing and applications of deep learning to chemistry and oncology.
Tommi Jaakkola (MIT)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction »
Wed. Jul 20th through Thu the 21st Room Hall E #105
More from the Same Authors
-
2021 : Light Attention Predicts Protein Location from the Language of Life »
Hannes Stärk · Hannes Stärk -
2023 : Optimizing protein fitness using Bi-level Gibbs sampling with Graph-based Smoothing »
Andrew Kirjner · Jason Yim · Raman Samusevich · Tommi Jaakkola · Regina Barzilay · Ila R. Fiete -
2023 : Optimizing protein fitness using Gibbs sampling with Graph-based Smoothing »
Andrew Kirjner · Jason Yim · Raman Samusevich · Tommi Jaakkola · Regina Barzilay · Ila R. Fiete -
2023 : Invited Talk by Tommi Jaakkola »
Tommi Jaakkola -
2023 Poster: PFGM++: Unlocking the Potential of Physics-Inspired Generative Models »
Yilun Xu · Ziming Liu · Yonglong Tian · Shangyuan Tong · Max Tegmark · Tommi Jaakkola -
2023 Poster: Towards Coherent Image Inpainting Using Denoising Diffusion Implicit Models »
Guanhua Zhang · Jiabao Ji · Yang Zhang · Mo Yu · Tommi Jaakkola · Shiyu Chang -
2023 Poster: SE(3) diffusion model with application to protein backbone generation »
Jason Yim · Brian Trippe · Valentin De Bortoli · Emile Mathieu · Arnaud Doucet · Regina Barzilay · Tommi Jaakkola -
2022 : EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction »
Hannes Stärk -
2022 Poster: Learning Stable Classifiers by Transferring Unstable Features »
Yujia Bao · Shiyu Chang · Regina Barzilay -
2022 Poster: Antibody-Antigen Docking and Design via Hierarchical Structure Refinement »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2022 Spotlight: Learning Stable Classifiers by Transferring Unstable Features »
Yujia Bao · Shiyu Chang · Regina Barzilay -
2022 Spotlight: Antibody-Antigen Docking and Design via Hierarchical Structure Refinement »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2022 Poster: Conformal Prediction Sets with Limited False Positives »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2022 Poster: 3D Infomax improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2022 Spotlight: Conformal Prediction Sets with Limited False Positives »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2022 Spotlight: 3D Infomax improves GNNs for Molecular Property Prediction »
Hannes Stärk · Dominique Beaini · Gabriele Corso · Prudencio Tossou · Christian Dallago · Stephan Günnemann · Pietro Lió -
2022 Invited Talk: Solving the Right Problems: Making ML Models Relevant to Healthcare and the Life Sciences »
Regina Barzilay -
2021 : Contributed Talk 2 - Light Attention Predicts Protein Location from the Language of Life »
Workshop CompBio · Hannes Stärk -
2021 Poster: Few-Shot Conformal Prediction with Auxiliary Tasks »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2021 Poster: Predict then Interpolate: A Simple Algorithm to Learn Stable Classifiers »
Yujia Bao · Shiyu Chang · Regina Barzilay -
2021 Spotlight: Few-Shot Conformal Prediction with Auxiliary Tasks »
Adam Fisch · Tal Schuster · Tommi Jaakkola · Regina Barzilay -
2021 Spotlight: Predict then Interpolate: A Simple Algorithm to Learn Stable Classifiers »
Yujia Bao · Shiyu Chang · Regina Barzilay -
2021 Poster: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Spotlight: Information Obfuscation of Graph Neural Networks »
Peiyuan Liao · Han Zhao · Keyulu Xu · Tommi Jaakkola · Geoff Gordon · Stefanie Jegelka · Ruslan Salakhutdinov -
2021 Poster: Learning Task Informed Abstractions »
Xiang Fu · Ge Yang · Pulkit Agrawal · Tommi Jaakkola -
2021 Spotlight: Learning Task Informed Abstractions »
Xiang Fu · Ge Yang · Pulkit Agrawal · Tommi Jaakkola -
2020 : Invited Talk: Tommi Jaakkola »
Tommi Jaakkola -
2020 Poster: Generalization and Representational Limits of Graph Neural Networks »
Vikas K Garg · Stefanie Jegelka · Tommi Jaakkola -
2020 Poster: Multi-Objective Molecule Generation using Interpretable Substructures »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2020 Poster: Educating Text Autoencoders: Latent Representation Guidance via Denoising »
Tianxiao Shen · Jonas Mueller · Regina Barzilay · Tommi Jaakkola -
2020 Poster: Invariant Rationalization »
Shiyu Chang · Yang Zhang · Mo Yu · Tommi Jaakkola -
2020 Poster: Predicting deliberative outcomes »
Vikas K Garg · Tommi Jaakkola -
2020 Poster: Hierarchical Generation of Molecular Graphs using Structural Motifs »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2020 Poster: Improving Molecular Design by Stochastic Iterative Target Augmentation »
Kevin Yang · Wengong Jin · Kyle Swanson · Regina Barzilay · Tommi Jaakkola -
2020 Poster: Constant Curvature Graph Convolutional Networks »
Gregor Bachmann · Gary Becigneul · Octavian Ganea -
2019 Poster: Functional Transparency for Structured Data: a Game-Theoretic Approach »
Guang-He Lee · Wengong Jin · David Alvarez-Melis · Tommi Jaakkola -
2019 Poster: Breaking the Softmax Bottleneck via Learnable Monotonic Pointwise Non-linearities »
Octavian-Eugen Ganea · Sylvain Gelly · Gary Becigneul · Aliaksei Severyn -
2019 Oral: Breaking the Softmax Bottleneck via Learnable Monotonic Pointwise Non-linearities »
Octavian-Eugen Ganea · Sylvain Gelly · Gary Becigneul · Aliaksei Severyn -
2019 Oral: Functional Transparency for Structured Data: a Game-Theoretic Approach »
Guang-He Lee · Wengong Jin · David Alvarez-Melis · Tommi Jaakkola -
2018 Poster: Junction Tree Variational Autoencoder for Molecular Graph Generation »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2018 Oral: Junction Tree Variational Autoencoder for Molecular Graph Generation »
Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2018 Poster: Hyperbolic Entailment Cones for Learning Hierarchical Embeddings »
Octavian-Eugen Ganea · Gary Becigneul · Thomas Hofmann -
2018 Oral: Hyperbolic Entailment Cones for Learning Hierarchical Embeddings »
Octavian-Eugen Ganea · Gary Becigneul · Thomas Hofmann -
2017 Poster: Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture »
Mingmin Zhao · Shichao Yue · Dina Katabi · Tommi Jaakkola · Matt Bianchi -
2017 Talk: Learning Sleep Stages from Radio Signals: A Conditional Adversarial Architecture »
Mingmin Zhao · Shichao Yue · Dina Katabi · Tommi Jaakkola · Matt Bianchi -
2017 Poster: Sequence to Better Sequence: Continuous Revision of Combinatorial Structures »
Jonas Mueller · David Gifford · Tommi Jaakkola -
2017 Talk: Sequence to Better Sequence: Continuous Revision of Combinatorial Structures »
Jonas Mueller · David Gifford · Tommi Jaakkola -
2017 Poster: Deriving Neural Architectures from Sequence and Graph Kernels »
Tao Lei · Wengong Jin · Regina Barzilay · Tommi Jaakkola -
2017 Talk: Deriving Neural Architectures from Sequence and Graph Kernels »
Tao Lei · Wengong Jin · Regina Barzilay · Tommi Jaakkola