Timezone: »
Defining meaningful distances between samples in a dataset is a fundamental problem in machine learning. Optimal Transport (OT) lifts a distance between features (the "ground metric") to a geometrically meaningful distance between samples. However, there is usually no straightforward choice of ground metric. Supervised ground metric learning approaches exist but require labeled data. In absence of labels, only ad-hoc ground metrics remain. Unsupervised ground metric learning is thus a fundamental problem to enable data-driven applications of OT. In this paper, we propose for the first time a canonical answer by simultaneously computing an OT distance between samples and between features of a dataset. These distance matrices emerge naturally as positive singular vectors of the function mapping ground metrics to OT distances. We provide criteria to ensure the existence and uniqueness of these singular vectors. We then introduce scalable computational methods to approximate them in high-dimensional settings, using stochastic approximation and entropic regularization. Finally, we showcase Wasserstein Singular Vectors on a single-cell RNA-sequencing dataset.
Author Information
Geert-Jan Huizing (ENS PSL)
Laura Cantini (Ecole Normale Supérieure)
Gabriel Peyré (CNRS and ENS)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Unsupervised Ground Metric Learning Using Wasserstein Singular Vectors »
Thu. Jul 21st 08:50 -- 08:55 PM Room Room 301 - 303
More from the Same Authors
-
2023 Poster: Fast, Differentiable and Sparse Top-k: a Convex Analysis Perspective »
Michael Sander · Joan Puigcerver · Josip Djolonga · Gabriel Peyré · Mathieu Blondel -
2022 Poster: Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2022 Spotlight: Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2021 Poster: Low-Rank Sinkhorn Factorization »
Meyer Scetbon · Marco Cuturi · Gabriel Peyré -
2021 Poster: Momentum Residual Neural Networks »
Michael Sander · Pierre Ablin · Mathieu Blondel · Gabriel Peyré -
2021 Spotlight: Momentum Residual Neural Networks »
Michael Sander · Pierre Ablin · Mathieu Blondel · Gabriel Peyré -
2021 Spotlight: Low-Rank Sinkhorn Factorization »
Meyer Scetbon · Marco Cuturi · Gabriel Peyré -
2020 Poster: Super-efficiency of automatic differentiation for functions defined as a minimum »
Pierre Ablin · Gabriel Peyré · Thomas Moreau -
2019 Poster: Geometric Losses for Distributional Learning »
Arthur Mensch · Mathieu Blondel · Gabriel Peyré -
2019 Oral: Geometric Losses for Distributional Learning »
Arthur Mensch · Mathieu Blondel · Gabriel Peyré -
2019 Poster: Stochastic Deep Networks »
Gwendoline De Bie · Gabriel Peyré · Marco Cuturi -
2019 Oral: Stochastic Deep Networks »
Gwendoline De Bie · Gabriel Peyré · Marco Cuturi