Timezone: »

 
Oral
Planning with Diffusion for Flexible Behavior Synthesis
Michael Janner · Yilun Du · Josh Tenenbaum · Sergey Levine

Wed Jul 20 12:40 PM -- 01:00 PM (PDT) @ Hall G

Model-based reinforcement learning methods often use learning only for the purpose of recovering an approximate dynamics model, offloading the rest of the decision-making work to classical trajectory optimizers.While conceptually simple, this combination has a number of empirical shortcomings, suggesting that learned models may not be well-suited to standard trajectory optimization.In this paper, we consider what it would look like to fold as much of the trajectory optimization pipeline as possible into the modeling problem, such that sampling from the model and planning with it become nearly identical.The core of our technical approach lies in a diffusion probabilistic model that plans by iteratively denoising trajectories.We show how classifier-guided sampling and image inpainting can be reinterpreted as coherent planning strategies, explore the unusual and useful properties of diffusion-based planning methods, and demonstrate the effectiveness of our framework in control settings that emphasize long-horizon decision-making and test-time flexibility.

Author Information

Michael Janner (UC Berkeley)
Yilun Du (MIT)
Josh Tenenbaum (MIT)

Joshua Brett Tenenbaum is Professor of Cognitive Science and Computation at the Massachusetts Institute of Technology. He is known for contributions to mathematical psychology and Bayesian cognitive science. He previously taught at Stanford University, where he was the Wasow Visiting Fellow from October 2010 to January 2011. Tenenbaum received his undergraduate degree in physics from Yale University in 1993, and his Ph.D. from MIT in 1999. His work primarily focuses on analyzing probabilistic inference as the engine of human cognition and as a means to develop machine learning.

Sergey Levine (UC Berkeley)
Sergey Levine

Sergey Levine received a BS and MS in Computer Science from Stanford University in 2009, and a Ph.D. in Computer Science from Stanford University in 2014. He joined the faculty of the Department of Electrical Engineering and Computer Sciences at UC Berkeley in fall 2016. His work focuses on machine learning for decision making and control, with an emphasis on deep learning and reinforcement learning algorithms. Applications of his work include autonomous robots and vehicles, as well as computer vision and graphics. His research includes developing algorithms for end-to-end training of deep neural network policies that combine perception and control, scalable algorithms for inverse reinforcement learning, deep reinforcement learning algorithms, and more.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors