Timezone: »
Sequential Bayesian inference over predictive functions is a natural framework for continual learning from streams of data. However, applying it to neural networks has proved challenging in practice. Addressing the drawbacks of existing techniques, we propose an optimization objective derived by formulating continual learning as sequential function-space variational inference. In contrast to existing methods that regularize neural network parameters directly, this objective allows parameters to vary widely during training, enabling better adaptation to new tasks. Compared to objectives that directly regularize neural network predictions, the proposed objective allows for more flexible variational distributions and more effective regularization. We demonstrate that, across a range of task sequences, neural networks trained via sequential function-space variational inference achieve better predictive accuracy than networks trained with related methods while depending less on maintaining a set of representative points from previous tasks.
Author Information
Tim G. J Rudner (University of Oxford)
Freddie Bickford Smith (University of Oxford)
QIXUAN FENG (University of Oxford)
Yee-Whye Teh (Oxford and DeepMind)
Yarin Gal (University of Oxford)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Continual Learning via Sequential Function-Space Variational Inference »
Thu. Jul 21st 03:25 -- 03:30 PM Room Room 309
More from the Same Authors
-
2021 : A Practical Notation for Information-Theoretic Quantities between Outcomes and Random Variables »
Andreas Kirsch · Yarin Gal -
2021 : GoldiProx Selection: Faster training by learning what is learnable, not yet learned, and worth learning »
Sören Mindermann · Muhammed Razzak · Adrien Morisot · Aidan Gomez · Sebastian Farquhar · Jan Brauner · Yarin Gal -
2021 : Continual Learning via Function-Space Variational Inference: A Unifying View »
Tim G. J. Rudner · Freddie Bickford Smith · Qixuan Feng · Yee-Whye Teh · Yarin Gal -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Andreas Kirsch · Tom Rainforth · Yarin Gal -
2021 : Batch Active Learning with Stochastic Acquisition Functions »
Andreas Kirsch · Sebastian Farquhar · Yarin Gal -
2021 : On Low Rank Training of Deep Neural Networks »
Siddhartha Kamalakara · Acyr Locatelli · Bharat Venkitesh · Jimmy Ba · Yarin Gal · Aidan Gomez -
2021 : Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data »
Andrew Jesson · Panagiotis Tigas · Joost van Amersfoort · Andreas Kirsch · Uri Shalit · Yarin Gal -
2021 : A Simple Baseline for Batch Active Learning with Stochastic Acquisition Functions »
Andreas Kirsch · Sebastian Farquhar · Yarin Gal -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Andreas Kirsch · Tom Rainforth · Yarin Gal -
2022 : Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations »
Cong Lu · Philip Ball · Tim G. J Rudner · Jack Parker-Holder · Michael A Osborne · Yee-Whye Teh -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · Jie Ren · Joost van Amersfoort · Kehang Han · E. Kelly Buchanan · Kevin Murphy · Mark Collier · Mike Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2023 : Synthetic Experience Replay »
Cong Lu · Philip Ball · Yee-Whye Teh · Jack Parker-Holder -
2023 : BatchGFN: Generative Flow Networks for Batch Active Learning »
Shreshth Malik · Salem Lahlou · Andrew Jesson · Moksh Jain · Nikolay Malkin · Tristan Deleu · Yoshua Bengio · Yarin Gal -
2023 : CLAM: Selective Clarification for Ambiguous Questions with Generative Language Models »
Lorenz Kuhn · Yarin Gal · Sebastian Farquhar -
2023 Poster: DiscoBAX - Discovery of optimal intervention sets in genomic experiment design »
Clare Lyle · Arash Mehrjou · Pascal Notin · Andrew Jesson · Stefan Bauer · Yarin Gal · Patrick Schwab -
2023 Poster: Modality-Agnostic Variational Compression of Implicit Neural Representations »
Jonathan Richard Schwarz · Jihoon Tack · Yee-Whye Teh · Jaeho Lee · Jinwoo Shin -
2023 Poster: Learning Instance-Specific Augmentations by Capturing Local Invariances »
Ning Miao · Tom Rainforth · Emile Mathieu · Yann Dubois · Yee-Whye Teh · Adam Foster · Hyunjik Kim -
2023 Poster: Drug Discovery under Covariate Shift with Domain-Informed Prior Distributions over Functions »
Leo Klarner · Tim G. J. Rudner · Michael Reutlinger · Torsten Schindler · Garrett Morris · Charlotte Deane · Yee-Whye Teh -
2023 Poster: Differentiable Multi-Target Causal Bayesian Experimental Design »
Panagiotis Tigas · Yashas Annadani · Desi Ivanova · Andrew Jesson · Yarin Gal · Adam Foster · Stefan Bauer -
2022 : Plex: Towards Reliability using Pretrained Large Model Extensions »
Dustin Tran · Andreas Kirsch · Balaji Lakshminarayanan · Huiyi Hu · Du Phan · D. Sculley · Jasper Snoek · Jeremiah Liu · JIE REN · Joost van Amersfoort · Kehang Han · Estefany Kelly Buchanan · Kevin Murphy · Mark Collier · Michael Dusenberry · Neil Band · Nithum Thain · Rodolphe Jenatton · Tim G. J Rudner · Yarin Gal · Zachary Nado · Zelda Mariet · Zi Wang · Zoubin Ghahramani -
2022 Poster: Learning Dynamics and Generalization in Deep Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Poster: Prioritized Training on Points that are Learnable, Worth Learning, and not yet Learnt »
Sören Mindermann · Jan Brauner · Muhammed Razzak · Mrinank Sharma · Andreas Kirsch · Winnie Xu · Benedikt Höltgen · Aidan Gomez · Adrien Morisot · Sebastian Farquhar · Yarin Gal -
2022 Spotlight: Learning Dynamics and Generalization in Deep Reinforcement Learning »
Clare Lyle · Mark Rowland · Will Dabney · Marta Kwiatkowska · Yarin Gal -
2022 Spotlight: Prioritized Training on Points that are Learnable, Worth Learning, and not yet Learnt »
Sören Mindermann · Jan Brauner · Muhammed Razzak · Mrinank Sharma · Andreas Kirsch · Winnie Xu · Benedikt Höltgen · Aidan Gomez · Adrien Morisot · Sebastian Farquhar · Yarin Gal -
2022 Poster: Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval »
Pascal Notin · Mafalda Dias · Jonathan Frazer · Javier Marchena Hurtado · Aidan Gomez · Debora Marks · Yarin Gal -
2022 Spotlight: Tranception: Protein Fitness Prediction with Autoregressive Transformers and Inference-time Retrieval »
Pascal Notin · Mafalda Dias · Jonathan Frazer · Javier Marchena Hurtado · Aidan Gomez · Debora Marks · Yarin Gal -
2021 : Active Learning under Pool Set Distribution Shift and Noisy Data »
Yarin Gal · Tom Rainforth · Andreas Kirsch -
2021 : Continual Learning via Function-Space Variational Inference: A Unifying View »
Yarin Gal · Yee-Whye Teh · Qixuan Feng · Freddie Bickford Smith · Tim G. J. Rudner -
2021 : Invited Talk #1 »
Yarin Gal -
2021 : Live Panel Discussion »
Thomas Dietterich · Chelsea Finn · Kamalika Chaudhuri · Yarin Gal · Uri Shalit -
2021 Poster: Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes »
Peter Holderrieth · Michael Hutchinson · Yee-Whye Teh -
2021 Spotlight: Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes »
Peter Holderrieth · Michael Hutchinson · Yee-Whye Teh -
2021 Test Of Time: Bayesian Learning via Stochastic Gradient Langevin Dynamics »
Yee Teh · Max Welling -
2021 Poster: Active Testing: Sample-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Tom Rainforth -
2021 Poster: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2021 Spotlight: Active Testing: Sample-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Tom Rainforth -
2021 Spotlight: On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes »
Tim G. J. Rudner · Oscar Key · Yarin Gal · Tom Rainforth -
2021 Poster: Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding »
Andrew Jesson · Sören Mindermann · Yarin Gal · Uri Shalit -
2021 Spotlight: Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding »
Andrew Jesson · Sören Mindermann · Yarin Gal · Uri Shalit -
2021 Poster: PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning »
Angelos Filos · Clare Lyle · Yarin Gal · Sergey Levine · Natasha Jaques · Gregory Farquhar -
2021 Oral: PsiPhi-Learning: Reinforcement Learning with Demonstrations using Successor Features and Inverse Temporal Difference Learning »
Angelos Filos · Clare Lyle · Yarin Gal · Sergey Levine · Natasha Jaques · Gregory Farquhar -
2021 Poster: LieTransformer: Equivariant Self-Attention for Lie Groups »
Michael Hutchinson · Charline Le Lan · Sheheryar Zaidi · Emilien Dupont · Yee-Whye Teh · Hyunjik Kim -
2021 Spotlight: LieTransformer: Equivariant Self-Attention for Lie Groups »
Michael Hutchinson · Charline Le Lan · Sheheryar Zaidi · Emilien Dupont · Yee-Whye Teh · Hyunjik Kim -
2020 Poster: Inter-domain Deep Gaussian Processes »
Tim G. J. Rudner · Dino Sejdinovic · Yarin Gal -
2020 Poster: MetaFun: Meta-Learning with Iterative Functional Updates »
Jin Xu · Jean-Francois Ton · Hyunjik Kim · Adam Kosiorek · Yee-Whye Teh -
2020 Poster: Divide, Conquer, and Combine: a New Inference Strategy for Probabilistic Programs with Stochastic Support »
Yuan Zhou · Hongseok Yang · Yee-Whye Teh · Tom Rainforth -
2020 Poster: Can Autonomous Vehicles Identify, Recover From, and Adapt to Distribution Shifts? »
Angelos Filos · Panagiotis Tigas · Rowan McAllister · Nicholas Rhinehart · Sergey Levine · Yarin Gal -
2020 Poster: Invariant Causal Prediction for Block MDPs »
Amy Zhang · Clare Lyle · Shagun Sodhani · Angelos Filos · Marta Kwiatkowska · Joelle Pineau · Yarin Gal · Doina Precup -
2020 Poster: Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum under Heavy-Tailed Gradient Noise »
Umut Simsekli · Lingjiong Zhu · Yee-Whye Teh · Mert Gurbuzbalaban -
2020 Poster: Uncertainty Estimation Using a Single Deep Deterministic Neural Network »
Joost van Amersfoort · Lewis Smith · Yee-Whye Teh · Yarin Gal -
2019 Oral: Hybrid Models with Deep and Invertible Features »
Eric Nalisnick · Akihiro Matsukawa · Yee-Whye Teh · Dilan Gorur · Balaji Lakshminarayanan -
2019 Poster: Disentangling Disentanglement in Variational Autoencoders »
Emile Mathieu · Tom Rainforth · N Siddharth · Yee-Whye Teh -
2019 Poster: Hybrid Models with Deep and Invertible Features »
Eric Nalisnick · Akihiro Matsukawa · Yee-Whye Teh · Dilan Gorur · Balaji Lakshminarayanan -
2019 Oral: Disentangling Disentanglement in Variational Autoencoders »
Emile Mathieu · Tom Rainforth · N Siddharth · Yee-Whye Teh -
2019 Poster: Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks »
Juho Lee · Yoonho Lee · Jungtaek Kim · Adam Kosiorek · Seungjin Choi · Yee-Whye Teh -
2019 Oral: Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks »
Juho Lee · Yoonho Lee · Jungtaek Kim · Adam Kosiorek · Seungjin Choi · Yee-Whye Teh -
2018 Poster: Progress & Compress: A scalable framework for continual learning »
Jonathan Richard Schwarz · Wojciech Czarnecki · Jelena Luketina · Agnieszka Grabska-Barwinska · Yee Teh · Razvan Pascanu · Raia Hadsell -
2018 Poster: Mix & Match - Agent Curricula for Reinforcement Learning »
Wojciech Czarnecki · Siddhant Jayakumar · Max Jaderberg · Leonard Hasenclever · Yee Teh · Nicolas Heess · Simon Osindero · Razvan Pascanu -
2018 Oral: Progress & Compress: A scalable framework for continual learning »
Jonathan Richard Schwarz · Wojciech Czarnecki · Jelena Luketina · Agnieszka Grabska-Barwinska · Yee Teh · Razvan Pascanu · Raia Hadsell -
2018 Oral: Mix & Match - Agent Curricula for Reinforcement Learning »
Wojciech Czarnecki · Siddhant Jayakumar · Max Jaderberg · Leonard Hasenclever · Yee Teh · Nicolas Heess · Simon Osindero · Razvan Pascanu -
2018 Poster: Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam »
Mohammad Emtiyaz Khan · Didrik Nielsen · Voot Tangkaratt · Wu Lin · Yarin Gal · Akash Srivastava -
2018 Oral: Fast and Scalable Bayesian Deep Learning by Weight-Perturbation in Adam »
Mohammad Emtiyaz Khan · Didrik Nielsen · Voot Tangkaratt · Wu Lin · Yarin Gal · Akash Srivastava -
2018 Poster: Conditional Neural Processes »
Marta Garnelo · Dan Rosenbaum · Chris Maddison · Tiago Ramalho · David Saxton · Murray Shanahan · Yee Teh · Danilo J. Rezende · S. M. Ali Eslami -
2018 Poster: Tighter Variational Bounds are Not Necessarily Better »
Tom Rainforth · Adam Kosiorek · Tuan Anh Le · Chris Maddison · Maximilian Igl · Frank Wood · Yee-Whye Teh -
2018 Oral: Tighter Variational Bounds are Not Necessarily Better »
Tom Rainforth · Adam Kosiorek · Tuan Anh Le · Chris Maddison · Maximilian Igl · Frank Wood · Yee-Whye Teh -
2018 Oral: Conditional Neural Processes »
Marta Garnelo · Dan Rosenbaum · Chris Maddison · Tiago Ramalho · David Saxton · Murray Shanahan · Yee Teh · Danilo J. Rezende · S. M. Ali Eslami