Timezone: »
Spurious correlations pose a major challenge for robust machine learning. Models trained with empirical risk minimization (ERM) may learn to rely on correlations between class labels and spurious attributes, leading to poor performance on data groups without these correlations. This is challenging to address when the spurious attribute labels are unavailable. To improve worst-group performance on spuriously correlated data without training attribute labels, we propose Correct-N-Contrast (CNC), a contrastive approach to directly learn representations robust to spurious correlations. As ERM models can be good spurious attribute predictors, CNC works by (1) using a trained ERM model’s outputs to identify samples with the same class but dissimilar spurious features, and (2) training a robust model with contrastive learning to learn similar representations for these samples. To support CNC, we introduce new connections between worst-group error and a representation alignment loss that CNC aims to minimize. We empirically observe that worst-group error closely tracks with alignment loss, and prove that the alignment loss over a class helps upper-bound the class's worst-group vs. average error gap. On popular benchmarks, CNC reduces alignment loss drastically, and achieves state-of-the-art worst-group accuracy by 3.6% average absolute lift. CNC is also competitive with oracle methods that require group labels.
Author Information
Michael Zhang (Stanford University)
Nimit Sohoni (Stanford University)
Hongyang Zhang (Northeastern University)
Chelsea Finn (Stanford)
Chelsea Finn is an Assistant Professor in Computer Science and Electrical Engineering at Stanford University. Finn's research interests lie in the capability of robots and other agents to develop broadly intelligent behavior through learning and interaction. To this end, her work has included deep learning algorithms for concurrently learning visual perception and control in robotic manipulation skills, inverse reinforcement methods for learning reward functions underlying behavior, and meta-learning algorithms that can enable fast, few-shot adaptation in both visual perception and deep reinforcement learning. Finn received her Bachelor's degree in Electrical Engineering and Computer Science at MIT and her PhD in Computer Science at UC Berkeley. Her research has been recognized through the ACM doctoral dissertation award, the Microsoft Research Faculty Fellowship, the C.V. Ramamoorthy Distinguished Research Award, and the MIT Technology Review 35 under 35 Award, and her work has been covered by various media outlets, including the New York Times, Wired, and Bloomberg. Throughout her career, she has sought to increase the representation of underrepresented minorities within CS and AI by developing an AI outreach camp at Berkeley for underprivileged high school students, a mentoring program for underrepresented undergraduates across four universities, and leading efforts within the WiML and Berkeley WiCSE communities of women researchers.
Christopher Re (Stanford University)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Correct-N-Contrast: a Contrastive Approach for Improving Robustness to Spurious Correlations »
Tue. Jul 19th through Wed the 20th Room Hall E #435
More from the Same Authors
-
2021 : A Standardized Data Collection Toolkit for Model Benchmarking »
Avanika Narayan · Piero Molino · Karan Goel · Christopher Re -
2021 : Multi-Task Offline Reinforcement Learning with Conservative Data Sharing »
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn -
2021 : Visual Adversarial Imitation Learning using Variational Models »
Rafael Rafailov · Tianhe (Kevin) Yu · Aravind Rajeswaran · Chelsea Finn -
2021 : Intrinsic Control of Variational Beliefs in Dynamic Partially-Observed Visual Environments »
Nicholas Rhinehart · Jenny Wang · Glen Berseth · John Co-Reyes · Danijar Hafner · Chelsea Finn · Sergey Levine -
2021 : The Reflective Explorer: Online Meta-Exploration from Offline Data in Visual Tasks with Sparse Rewards »
Rafael Rafailov · Varun Kumar · Tianhe (Kevin) Yu · Avi Singh · mariano phielipp · Chelsea Finn -
2021 : Multi-Task Offline Reinforcement Learning with Conservative Data Sharing »
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Sergey Levine · Chelsea Finn -
2022 : Self-Destructing Models: Increasing the Costs of Harmful Dual Uses in Foundation Models »
Eric Mitchell · Peter Henderson · Christopher Manning · Dan Jurafsky · Chelsea Finn -
2022 : Giving Complex Feedback in Online Student Learning with Meta-Exploration »
Evan Liu · Moritz Stephan · Allen Nie · Chris Piech · Emma Brunskill · Chelsea Finn -
2022 : Policy Architectures for Compositional Generalization in Control »
Allan Zhou · Vikash Kumar · Chelsea Finn · Aravind Rajeswaran -
2022 : BARACK: Partially Supervised Group Robustness With Guarantees »
Nimit Sohoni · Maziar Sanjabi · Nicolas Ballas · Aditya Grover · Shaoliang Nie · Hamed Firooz · Christopher Re -
2022 : Contrastive Adapters for Foundation Model Group Robustness »
Michael Zhang · Christopher Re -
2022 : Diversify and Disambiguate: Learning from Underspecified Data »
Yoonho Lee · Huaxiu Yao · Chelsea Finn -
2022 : The Importance of Background Information for Out of Distribution Generalization »
Jupinder Parmar · Khaled Saab · Brian Pogatchnik · Daniel Rubin · Christopher Ré -
2022 : Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time »
Huaxiu Yao · Caroline Choi · Yoonho Lee · Pang Wei Koh · Chelsea Finn -
2022 : Transform Once: Efficient Operator Learning in Frequency Domain »
Michael Poli · Stefano Massaroli · Federico Berto · Jinkyoo Park · Tri Dao · Christopher Re · Stefano Ermon -
2022 : Giving Feedback on Interactive Student Programs with Meta-Exploration »
Evan Liu · Moritz Stephan · Allen Nie · Chris Piech · Emma Brunskill · Chelsea Finn -
2022 : When to Ask for Help: Proactive Interventions in Autonomous Reinforcement Learning »
Annie Xie · Fahim Tajwar · Archit Sharma · Chelsea Finn -
2022 : You Only Live Once: Single-Life Reinforcement Learning via Learned Reward Shaping »
Annie Chen · Archit Sharma · Sergey Levine · Chelsea Finn -
2022 : Diversify and Disambiguate: Learning from Underspecified Data »
Yoonho Lee · Huaxiu Yao · Chelsea Finn -
2022 : Self-Destructing Models: Increasing the Costs of Harmful Dual Uses in Foundation Models »
Eric Mitchell · Peter Henderson · Christopher Manning · Dan Jurafsky · Chelsea Finn -
2023 : In-Context Decision-Making from Supervised Pretraining »
Jonathan Lee · Annie Xie · Aldo Pacchiano · Yash Chandak · Chelsea Finn · Ofir Nachum · Emma Brunskill -
2023 : Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware »
Tony Zhao · Vikash Kumar · Sergey Levine · Chelsea Finn -
2023 : Skill-it! A Data-Driven Skills Framework for Understanding and Training Language Models »
Mayee Chen · Nicholas Roberts · Kush Bhatia · Jue Wang · Ce Zhang · Frederic Sala · Christopher Ré -
2023 : Prospectors: Leveraging Short Contexts to Mine Salient Objects in High-dimensional Imagery »
Gautam Machiraju · Arjun Desai · James Zou · Christopher Re · Parag Mallick -
2023 : Accelerating LLM Inference with Staged Speculative Decoding »
Benjamin F Spector · Christopher Re -
2023 : H2O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language Models »
Zhenyu Zhang · Ying Sheng · Tianyi Zhou · Tianlong Chen · Lianmin Zheng · Ruisi Cai · Zhao Song · Yuandong Tian · Christopher Re · Clark Barrett · Zhangyang “Atlas” Wang · Beidi Chen -
2023 : Direct Preference Optimization: Your Language Model is Secretly a Reward Model »
Rafael Rafailov · Archit Sharma · Eric Mitchell · Stefano Ermon · Christopher Manning · Chelsea Finn -
2023 : Cal-QL: Calibrated Offline RL Pre-Training for Efficient Online Fine-Tuning »
Mitsuhiko Nakamoto · Yuexiang Zhai · Anikait Singh · Max Sobol Mark · Yi Ma · Chelsea Finn · Aviral Kumar · Sergey Levine -
2023 : Keynote I: Detecting and Adapting to Distribution Shift »
Chelsea Finn -
2023 Oral: Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time »
Zichang Liu · Jue Wang · Tri Dao · Tianyi Zhou · Binhang Yuan · Zhao Song · Anshumali Shrivastava · Ce Zhang · Yuandong Tian · Christopher Re · Beidi Chen -
2023 Oral: Hyena Hierarchy: Towards Larger Convolutional Language Models »
Michael Poli · Stefano Massaroli · Eric Nguyen · Daniel Y Fu · Tri Dao · Stephen Baccus · Yoshua Bengio · Stefano Ermon · Christopher Re -
2023 Poster: Simple Hardware-Efficient Long Convolutions for Sequence Modeling »
Daniel Y Fu · Elliot L Epstein · Eric Nguyen · Armin Thomas · Michael Zhang · Tri Dao · Atri Rudra · Christopher Re -
2023 Poster: FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU »
Ying Sheng · Lianmin Zheng · Binhang Yuan · Zhuohan Li · Max Ryabinin · Beidi Chen · Percy Liang · Christopher Re · Ion Stoica · Ce Zhang -
2023 Oral: FlexGen: High-Throughput Generative Inference of Large Language Models with a Single GPU »
Ying Sheng · Lianmin Zheng · Binhang Yuan · Zhuohan Li · Max Ryabinin · Beidi Chen · Percy Liang · Christopher Re · Ion Stoica · Ce Zhang -
2023 Oral: DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature »
Eric Mitchell · Yoonho Lee · Alexander Khazatsky · Christopher Manning · Chelsea Finn -
2023 Poster: Simple Embodied Language Learning as a Byproduct of Meta-Reinforcement Learning »
Evan Liu · Sahaana Suri · Tong Mu · Allan Zhou · Chelsea Finn -
2023 Poster: Hyena Hierarchy: Towards Larger Convolutional Language Models »
Michael Poli · Stefano Massaroli · Eric Nguyen · Daniel Y Fu · Tri Dao · Stephen Baccus · Yoshua Bengio · Stefano Ermon · Christopher Re -
2023 Poster: CocktailSGD: Fine-tuning Foundation Models over 500Mbps Networks »
Jue Wang · Yucheng Lu · Binhang Yuan · Beidi Chen · Percy Liang · Chris De Sa · Christopher Re · Ce Zhang -
2023 Poster: DetectGPT: Zero-Shot Machine-Generated Text Detection using Probability Curvature »
Eric Mitchell · Yoonho Lee · Alexander Khazatsky · Christopher Manning · Chelsea Finn -
2023 Poster: Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time »
Zichang Liu · Jue Wang · Tri Dao · Tianyi Zhou · Binhang Yuan · Zhao Song · Anshumali Shrivastava · Ce Zhang · Yuandong Tian · Christopher Re · Beidi Chen -
2022 : FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness »
Tri Dao · Daniel Y Fu · Stefano Ermon · Atri Rudra · Christopher Re -
2022 : Giving Complex Feedback in Online Student Learning with Meta-Exploration »
Evan Liu · Moritz Stephan · Allen Nie · Chris Piech · Emma Brunskill · Chelsea Finn -
2022 Workshop: The First Workshop on Pre-training: Perspectives, Pitfalls, and Paths Forward »
Huaxiu Yao · Hugo Larochelle · Percy Liang · Colin Raffel · Jian Tang · Ying WEI · Saining Xie · Eric Xing · Chelsea Finn -
2022 : Panel discussion »
Steffen Schneider · Aleksander Madry · Alexei Efros · Chelsea Finn · Soheil Feizi -
2022 : Q/A: Chelsea Finn »
Chelsea Finn -
2022 : Invited Speaker: Chelsea Finn »
Chelsea Finn -
2022 : Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time »
Huaxiu Yao · Caroline Choi · Yoonho Lee · Pang Wei Koh · Chelsea Finn -
2022 : Invited Talk 3: Chelsea Finn »
Chelsea Finn -
2022 Poster: Robust Policy Learning over Multiple Uncertainty Sets »
Annie Xie · Shagun Sodhani · Chelsea Finn · Joelle Pineau · Amy Zhang -
2022 Poster: How to Leverage Unlabeled Data in Offline Reinforcement Learning »
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Chelsea Finn · Sergey Levine -
2022 Poster: Memory-Based Model Editing at Scale »
Eric Mitchell · Charles Lin · Antoine Bosselut · Christopher Manning · Chelsea Finn -
2022 Poster: It’s Raw! Audio Generation with State-Space Models »
Karan Goel · Albert Gu · Chris Donahue · Christopher Re -
2022 Spotlight: Robust Policy Learning over Multiple Uncertainty Sets »
Annie Xie · Shagun Sodhani · Chelsea Finn · Joelle Pineau · Amy Zhang -
2022 Spotlight: How to Leverage Unlabeled Data in Offline Reinforcement Learning »
Tianhe (Kevin) Yu · Aviral Kumar · Yevgen Chebotar · Karol Hausman · Chelsea Finn · Sergey Levine -
2022 Oral: It’s Raw! Audio Generation with State-Space Models »
Karan Goel · Albert Gu · Chris Donahue · Christopher Re -
2022 Spotlight: Memory-Based Model Editing at Scale »
Eric Mitchell · Charles Lin · Antoine Bosselut · Christopher Manning · Chelsea Finn -
2022 Poster: Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning »
Mayee Chen · Daniel Y Fu · Avanika Narayan · Michael Zhang · Zhao Song · Kayvon Fatahalian · Christopher Re -
2022 Poster: Improving Out-of-Distribution Robustness via Selective Augmentation »
Huaxiu Yao · Yu Wang · Sai Li · Linjun Zhang · Weixin Liang · James Zou · Chelsea Finn -
2022 Spotlight: Improving Out-of-Distribution Robustness via Selective Augmentation »
Huaxiu Yao · Yu Wang · Sai Li · Linjun Zhang · Weixin Liang · James Zou · Chelsea Finn -
2022 Spotlight: Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning »
Mayee Chen · Daniel Y Fu · Avanika Narayan · Michael Zhang · Zhao Song · Kayvon Fatahalian · Christopher Re -
2022 Poster: Monarch: Expressive Structured Matrices for Efficient and Accurate Training »
Tri Dao · Beidi Chen · Nimit Sohoni · Arjun Desai · Michael Poli · Jessica Grogan · Alexander Liu · Aniruddh Rao · Atri Rudra · Christopher Re -
2022 Poster: A State-Distribution Matching Approach to Non-Episodic Reinforcement Learning »
Archit Sharma · Rehaan Ahmad · Chelsea Finn -
2022 Oral: Monarch: Expressive Structured Matrices for Efficient and Accurate Training »
Tri Dao · Beidi Chen · Nimit Sohoni · Arjun Desai · Michael Poli · Jessica Grogan · Alexander Liu · Aniruddh Rao · Atri Rudra · Christopher Re -
2022 Spotlight: A State-Distribution Matching Approach to Non-Episodic Reinforcement Learning »
Archit Sharma · Rehaan Ahmad · Chelsea Finn -
2021 : Live Panel Discussion »
Thomas Dietterich · Chelsea Finn · Kamalika Chaudhuri · Yarin Gal · Uri Shalit -
2021 Poster: Offline Meta-Reinforcement Learning with Advantage Weighting »
Eric Mitchell · Rafael Rafailov · Xue Bin Peng · Sergey Levine · Chelsea Finn -
2021 Poster: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Poster: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections »
Ines Chami · Albert Gu · Dat P Nguyen · Christopher Re -
2021 Spotlight: HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections »
Ines Chami · Albert Gu · Dat P Nguyen · Christopher Re -
2021 Spotlight: Offline Meta-Reinforcement Learning with Advantage Weighting »
Eric Mitchell · Rafael Rafailov · Xue Bin Peng · Sergey Levine · Chelsea Finn -
2021 Oral: WILDS: A Benchmark of in-the-Wild Distribution Shifts »
Pang Wei Koh · Shiori Sagawa · Henrik Marklund · Sang Michael Xie · Marvin Zhang · Akshay Balsubramani · Weihua Hu · Michihiro Yasunaga · Richard Lanas Phillips · Irena Gao · Tony Lee · Etienne David · Ian Stavness · Wei Guo · Berton Earnshaw · Imran Haque · Sara Beery · Jure Leskovec · Anshul Kundaje · Emma Pierson · Sergey Levine · Chelsea Finn · Percy Liang -
2021 Poster: Mandoline: Model Evaluation under Distribution Shift »
Mayee Chen · Karan Goel · Nimit Sohoni · Fait Poms · Kayvon Fatahalian · Christopher Re -
2021 Spotlight: Mandoline: Model Evaluation under Distribution Shift »
Mayee Chen · Karan Goel · Nimit Sohoni · Fait Poms · Kayvon Fatahalian · Christopher Re -
2021 Poster: Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices »
Evan Liu · Aditi Raghunathan · Percy Liang · Chelsea Finn -
2021 Spotlight: Decoupling Exploration and Exploitation for Meta-Reinforcement Learning without Sacrifices »
Evan Liu · Aditi Raghunathan · Percy Liang · Chelsea Finn -
2021 Poster: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2021 Poster: Just Train Twice: Improving Group Robustness without Training Group Information »
Evan Liu · Behzad Haghgoo · Annie Chen · Aditi Raghunathan · Pang Wei Koh · Shiori Sagawa · Percy Liang · Chelsea Finn -
2021 Spotlight: Catformer: Designing Stable Transformers via Sensitivity Analysis »
Jared Quincy Davis · Albert Gu · Krzysztof Choromanski · Tri Dao · Christopher Re · Chelsea Finn · Percy Liang -
2021 Oral: Just Train Twice: Improving Group Robustness without Training Group Information »
Evan Liu · Behzad Haghgoo · Annie Chen · Aditi Raghunathan · Pang Wei Koh · Shiori Sagawa · Percy Liang · Chelsea Finn -
2021 Poster: Deep Reinforcement Learning amidst Continual Structured Non-Stationarity »
Annie Xie · James Harrison · Chelsea Finn -
2021 Spotlight: Deep Reinforcement Learning amidst Continual Structured Non-Stationarity »
Annie Xie · James Harrison · Chelsea Finn -
2020 : Invited Talk 11: Prof. Chelsea Finn from Stanford University »
Chelsea Finn -
2020 Poster: Goal-Aware Prediction: Learning to Model What Matters »
Suraj Nair · Silvio Savarese · Chelsea Finn -
2020 Poster: On the Expressivity of Neural Networks for Deep Reinforcement Learning »
Kefan Dong · Yuping Luo · Tianhe (Kevin) Yu · Chelsea Finn · Tengyu Ma -
2020 Poster: Cautious Adaptation For Reinforcement Learning in Safety-Critical Settings »
Jesse Zhang · Brian Cheung · Chelsea Finn · Sergey Levine · Dinesh Jayaraman -
2020 Poster: Fast and Three-rious: Speeding Up Weak Supervision with Triplet Methods »
Daniel Y Fu · Mayee Chen · Frederic Sala · Sarah Hooper · Kayvon Fatahalian · Christopher Re -
2020 Poster: On the Generalization Effects of Linear Transformations in Data Augmentation »
Sen Wu · Hongyang Zhang · Gregory Valiant · Christopher Re -
2019 Poster: Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations »
Tri Dao · Albert Gu · Matthew Eichhorn · Atri Rudra · Christopher Re -
2019 Poster: Learning Dependency Structures for Weak Supervision Models »
Paroma Varma · Frederic Sala · Ann He · Alexander J Ratner · Christopher Re -
2019 Oral: Learning Dependency Structures for Weak Supervision Models »
Paroma Varma · Frederic Sala · Ann He · Alexander J Ratner · Christopher Re -
2019 Oral: Learning Fast Algorithms for Linear Transforms Using Butterfly Factorizations »
Tri Dao · Albert Gu · Matthew Eichhorn · Atri Rudra · Christopher Re -
2019 Poster: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re -
2019 Oral: A Kernel Theory of Modern Data Augmentation »
Tri Dao · Albert Gu · Alexander J Ratner · Virginia Smith · Christopher De Sa · Christopher Re -
2018 Poster: Representation Tradeoffs for Hyperbolic Embeddings »
Frederic Sala · Christopher De Sa · Albert Gu · Christopher Re -
2018 Oral: Representation Tradeoffs for Hyperbolic Embeddings »
Frederic Sala · Christopher De Sa · Albert Gu · Christopher Re -
2017 Poster: Learning the Structure of Generative Models without Labeled Data »
Stephen Bach · Bryan He · Alexander J Ratner · Christopher Re -
2017 Talk: Learning the Structure of Generative Models without Labeled Data »
Stephen Bach · Bryan He · Alexander J Ratner · Christopher Re