Timezone: »
Contrastively trained language-image models such as CLIP, ALIGN, and BASIC have demonstrated unprecedented robustness to multiple challenging natural distribution shifts. Since these language-image models differ from previous training approaches in several ways, an important question is what causes the large robustness gains. We answer this question via a systematic experimental investigation. Concretely, we study five different possible causes for the robustness gains: (i) the training set size, (ii) the training distribution, (iii) language supervision at training time, (iv) language supervision at test time, and (v) the contrastive loss function. Our experiments show that the more diverse training distribution is the main cause for the robustness gains, with the other factors contributing little to no robustness. Beyond our experimental results, we also introduce ImageNet-Captions, a version of ImageNet with original text annotations from Flickr, to enable further controlled experiments of language-image training.
Author Information
Alex Fang (University of Washington)
Gabriel Ilharco (University of Washington)
Mitchell Wortsman (University of Washington)
Yuhao Wan (University of Washington, Seattle)
Vaishaal Shankar (Amazon)
Achal Dave (Carnegie Mellon University)
Ludwig Schmidt (University of Washington)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Data Determines Distributional Robustness in Contrastive Language Image Pre-training (CLIP) »
Wed. Jul 20th 06:10 -- 06:15 PM Room Room 318 - 320
More from the Same Authors
-
2022 : How well do contrastively trained models transfer? »
M. Moein Shariatnia · Rahim Entezari · Mitchell Wortsman · Olga Saukh · Ludwig Schmidt -
2022 : On the Connection between Pre-training Data Diversity and Robustness »
Vivek Ramanujan · Vivek Ramanujan · Thao Nguyen · Thao Nguyen · Ludwig Schmidt · Ali Farhadi · Ali Farhadi -
2023 Poster: Robustness in Multimodal Learning under Train-Test Modality Mismatch »
Brandon McKinzie · Vaishaal Shankar · Joseph Cheng · Yinfei Yang · Jonathon Shlens · Alexander Toshev -
2022 Poster: Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time »
Mitchell Wortsman · Gabriel Ilharco · Samir Gadre · Rebecca Roelofs · Raphael Gontijo Lopes · Ari Morcos · Hongseok Namkoong · Ali Farhadi · Yair Carmon · Simon Kornblith · Ludwig Schmidt -
2022 Spotlight: Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time »
Mitchell Wortsman · Gabriel Ilharco · Samir Gadre · Rebecca Roelofs · Raphael Gontijo Lopes · Ari Morcos · Hongseok Namkoong · Ali Farhadi · Yair Carmon · Simon Kornblith · Ludwig Schmidt -
2021 Poster: Accuracy on the Line: on the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization »
John Miller · Rohan Taori · Aditi Raghunathan · Shiori Sagawa · Pang Wei Koh · Vaishaal Shankar · Percy Liang · Yair Carmon · Ludwig Schmidt -
2021 Spotlight: Accuracy on the Line: on the Strong Correlation Between Out-of-Distribution and In-Distribution Generalization »
John Miller · Rohan Taori · Aditi Raghunathan · Shiori Sagawa · Pang Wei Koh · Vaishaal Shankar · Percy Liang · Yair Carmon · Ludwig Schmidt -
2021 Poster: Learning Neural Network Subspaces »
Mitchell Wortsman · Maxwell Horton · Carlos Guestrin · Ali Farhadi · Mohammad Rastegari -
2021 Spotlight: Learning Neural Network Subspaces »
Mitchell Wortsman · Maxwell Horton · Carlos Guestrin · Ali Farhadi · Mohammad Rastegari -
2020 Poster: Neural Kernels Without Tangents »
Vaishaal Shankar · Alex Fang · Wenshuo Guo · Sara Fridovich-Keil · Jonathan Ragan-Kelley · Ludwig Schmidt · Benjamin Recht -
2020 Poster: Evaluating Machine Accuracy on ImageNet »
Vaishaal Shankar · Rebecca Roelofs · Horia Mania · Alex Fang · Benjamin Recht · Ludwig Schmidt -
2019 Poster: Do ImageNet Classifiers Generalize to ImageNet? »
Benjamin Recht · Rebecca Roelofs · Ludwig Schmidt · Vaishaal Shankar -
2019 Oral: Do ImageNet Classifiers Generalize to ImageNet? »
Benjamin Recht · Rebecca Roelofs · Ludwig Schmidt · Vaishaal Shankar