Timezone: »
Gradient-free/zeroth-order methods for black-box convex optimization have been extensively studied in the last decade with the main focus on oracle calls complexity. In this paper, besides the oracle complexity, we focus also on iteration complexity, and propose a generic approach that, based on optimal first-order methods, allows to obtain in a black-box fashion new zeroth-order algorithms for non-smooth convex optimization problems. Our approach not only leads to optimal oracle complexity, but also allows to obtain iteration complexity similar to first-order methods, which, in turn, allows to exploit parallel computations to accelerate the convergence of our algorithms. We also elaborate on extensions for stochastic optimization problems, saddle-point problems, and distributed optimization.
Author Information
Alexander Gasnikov (Moscow Institute of Physics and Technology)
Anton Novitskii (MIPT)
Vasilii Novitskii (MIPT)
Farshed Abdukhakimov (MBZUAI)
Dmitry Kamzolov (Mohamed bin Zayed University of Artificial Intelligence)
Aleksandr Beznosikov (Moscow Institute of Physics and Technology (National Research University))
Martin Takac (MBZUAI)
Pavel Dvurechenskii (Weierstrass Institute)
Graduated with honors from Moscow Institute of Physics and Technology. PhD on differential games in the same university. At the moment research associate in the area of optimization under inexact information in Berlin. Research interest include - algorithms for convex and non-convex large-scale optimization problems; - optimization under deterministic and stochastic inexact information; - randomized algorithms: random coordinate descent, random (derivative-free) directional search; - numerical aspects of Optimal Transport - Algorithms for saddle-point problems and variational inequalities
Bin Gu (Nanjing University of Information Science & Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: The power of first-order smooth optimization for black-box non-smooth problems »
Wed. Jul 20th 09:50 -- 09:55 PM Room Room 327 - 329
More from the Same Authors
-
2023 : Kernel Mirror Prox and RKHS Gradient Flow for Mixed Functional Nash Equilibrium »
Pavel Dvurechenskii · Jia-Jie Zhu -
2023 : Kernel Mirror Prox and RKHS Gradient Flow for Mixed Functional Nash Equilibrium »
Pavel Dvurechenskii · Jia-Jie Zhu -
2023 Poster: High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance »
Abdurakhmon Sadiev · Marina Danilova · Eduard Gorbunov · Samuel Horváth · Gauthier Gidel · Pavel Dvurechenskii · Alexander Gasnikov · Peter Richtarik -
2023 Poster: Is Consensus Acceleration Possible in Decentralized Optimization over Slowly Time-Varying Networks? »
Dmitry Metelev · Alexander Rogozin · Dmitry Kovalev · Alexander Gasnikov -
2023 Poster: A Unified Optimization Framework of ANN-SNN Conversion: Towards Optimal Mapping from Activation Values to Firing Rates »
Haiyan Jiang · srinivas anumasa · Giulia De Masi · Huan Xiong · Bin Gu -
2022 Poster: Gradient-Free Method for Heavily Constrained Nonconvex Optimization »
Wanli Shi · Hongchang Gao · Bin Gu -
2022 Spotlight: Gradient-Free Method for Heavily Constrained Nonconvex Optimization »
Wanli Shi · Hongchang Gao · Bin Gu -
2021 Poster: ADOM: Accelerated Decentralized Optimization Method for Time-Varying Networks »
Dmitry Kovalev · Egor Shulgin · Peter Richtarik · Alexander Rogozin · Alexander Gasnikov -
2021 Spotlight: ADOM: Accelerated Decentralized Optimization Method for Time-Varying Networks »
Dmitry Kovalev · Egor Shulgin · Peter Richtarik · Alexander Rogozin · Alexander Gasnikov -
2021 Poster: On a Combination of Alternating Minimization and Nesterov's Momentum »
Sergey Guminov · Pavel Dvurechenskii · Nazarii Tupitsa · Alexander Gasnikov -
2021 Spotlight: On a Combination of Alternating Minimization and Nesterov's Momentum »
Sergey Guminov · Pavel Dvurechenskii · Nazarii Tupitsa · Alexander Gasnikov -
2021 Poster: Newton Method over Networks is Fast up to the Statistical Precision »
Amir Daneshmand · Gesualdo Scutari · Pavel Dvurechenskii · Alexander Gasnikov -
2021 Spotlight: Newton Method over Networks is Fast up to the Statistical Precision »
Amir Daneshmand · Gesualdo Scutari · Pavel Dvurechenskii · Alexander Gasnikov -
2020 Poster: Fast OSCAR and OWL Regression via Safe Screening Rules »
Runxue Bao · Bin Gu · Heng Huang -
2020 Poster: Self-Concordant Analysis of Frank-Wolfe Algorithms »
Pavel Dvurechenskii · Petr Ostroukhov · Kamil Safin · Shimrit Shtern · Mathias Staudigl -
2019 Poster: On the Complexity of Approximating Wasserstein Barycenters »
Alexey Kroshnin · Nazarii Tupitsa · Darina Dvinskikh · Pavel Dvurechenskii · Alexander Gasnikov · Cesar Uribe -
2019 Oral: On the Complexity of Approximating Wasserstein Barycenters »
Alexey Kroshnin · Nazarii Tupitsa · Darina Dvinskikh · Pavel Dvurechenskii · Alexander Gasnikov · Cesar Uribe -
2018 Poster: SGD and Hogwild! Convergence Without the Bounded Gradients Assumption »
Lam Nguyen · PHUONG_HA NGUYEN · Marten van Dijk · Peter Richtarik · Katya Scheinberg · Martin Takac -
2018 Poster: Computational Optimal Transport: Complexity by Accelerated Gradient Descent Is Better Than by Sinkhorn's Algorithm »
Pavel Dvurechenskii · Alexander Gasnikov · Alexey Kroshnin -
2018 Oral: SGD and Hogwild! Convergence Without the Bounded Gradients Assumption »
Lam Nguyen · PHUONG_HA NGUYEN · Marten van Dijk · Peter Richtarik · Katya Scheinberg · Martin Takac -
2018 Oral: Computational Optimal Transport: Complexity by Accelerated Gradient Descent Is Better Than by Sinkhorn's Algorithm »
Pavel Dvurechenskii · Alexander Gasnikov · Alexey Kroshnin -
2017 Poster: SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient »
Lam Nguyen · Jie Liu · Katya Scheinberg · Martin Takac -
2017 Talk: SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient »
Lam Nguyen · Jie Liu · Katya Scheinberg · Martin Takac