Timezone: »
Recovering global rankings from pairwise comparisons has wide applications from time synchronization to sports team ranking. Pairwise comparisons corresponding to matches in a competition can be construed as edges in a directed graph (digraph), whose nodes represent e.g. competitors with an unknown rank. In this paper, we introduce neural networks into the ranking recovery problem by proposing the so-called GNNRank, a trainable GNN-based framework with digraph embedding. Moreover, new objectives are devised to encode ranking upsets/violations. The framework involves a ranking score estimation approach, and adds an inductive bias by unfolding the Fiedler vector computation of the graph constructed from a learnable similarity matrix. Experimental results on extensive data sets show that our methods attain competitive and often superior performance against baselines, as well as showing promising transfer ability. Codes and preprocessed data are at: \url{https://github.com/SherylHYX/GNNRank}.
Author Information
Yixuan He (University of Oxford)
Quan Gan (Amazon)
David Wipf (Microsoft Research)
Gesine Reinert (University of Oxford)
Gesine Reinert is a University Professor in Statistics at the University of Oxford. She is a Fellow of Keble College, Oxford, a Fellow of the Alan Turing Institute, and a Fellow of the Institute of Mathematical Statistics.Her research interests include network analysis, models for biological data, and applied probability.
Junchi Yan (Shanghai Jiao Tong University)
Mihai Cucuringu (University of Oxford and The Alan Turing Institute)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: GNNRank: Learning Global Rankings from Pairwise Comparisons via Directed Graph Neural Networks »
Tue. Jul 19th 06:40 -- 06:45 PM Room Room 327 - 329
More from the Same Authors
-
2023 Poster: Towards Quantum Machine Learning for Constrained Combinatorial Optimization: a Quantum QAP Solver »
Xinyu Ye · Ge Yan · Junchi Yan -
2023 Poster: Patch-level Contrastive Learning via Positional Query for Visual Pre-training »
Shaofeng Zhang · Qiang Zhou · Zhibin Wang · Fan Wang · Junchi Yan -
2023 Poster: On the Initialization of Graph Neural Networks »
Jiahang Li · Yakun Song · Xiang song · David Wipf -
2023 Poster: Quantum 3D Graph Learning with Applications to Molecule Embedding »
Ge Yan · Huaijin Wu · Junchi Yan -
2023 Poster: From Hypergraph Energy Functions to Hypergraph Neural Networks »
Yuxin Wang · Quan Gan · Xipeng Qiu · Xuanjing Huang · David Wipf -
2023 Poster: QAS-Bench: Rethinking Quantum Architecture Search and A Benchmark »
Xudong Lu · Kaisen Pan · Ge Yan · Jiaming Shan · Wenjie Wu · Junchi Yan -
2023 Poster: Marginalization is not Marginal: No Bad VAE Local Minima when Learning Optimal Sparse Representations »
David Wipf -
2023 Poster: Understanding and Generalizing Contrastive Learning from the Inverse Optimal Transport Perspective »
Liangliang Shi · Gu Zhang · Haoyu Zhen · Jintao Fan · Junchi Yan -
2023 Poster: LinSATNet: The Positive Linear Satisfiability Neural Networks »
Runzhong Wang · Yunhao Zhang · Ziao Guo · Tianyi Chen · Xiaokang Yang · Junchi Yan -
2023 Oral: Marginalization is not Marginal: No Bad VAE Local Minima when Learning Optimal Sparse Representations »
David Wipf -
2023 Poster: QuantumDARTS: Differentiable Quantum Architecture Search for Variational Quantum Algorithms »
Wenjie Wu · Ge Yan · Xudong Lu · Kaisen Pan · Junchi Yan -
2022 Poster: On Collective Robustness of Bagging Against Data Poisoning »
Ruoxin Chen · Zenan Li · Jie Li · Junchi Yan · Chentao Wu -
2022 Poster: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Spotlight: Deep Neural Network Fusion via Graph Matching with Applications to Model Ensemble and Federated Learning »
Chang Liu · Chenfei Lou · Runzhong Wang · Alan Yuhan Xi · Li Shen · Junchi Yan -
2022 Spotlight: On Collective Robustness of Bagging Against Data Poisoning »
Ruoxin Chen · Zenan Li · Jie Li · Junchi Yan · Chentao Wu -
2021 Poster: Graph Neural Networks Inspired by Classical Iterative Algorithms »
Yongyi Yang · Tang Liu · Yangkun Wang · Jinjing Zhou · Quan Gan · Zhewei Wei · Zheng Zhang · Zengfeng Huang · David Wipf -
2021 Poster: Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering Approach »
Qitian Wu · Hengrui Zhang · Xiaofeng Gao · Junchi Yan · Hongyuan Zha -
2021 Poster: Learning Self-Modulating Attention in Continuous Time Space with Applications to Sequential Recommendation »
Chao Chen · Haoyu Geng · Nianzu Yang · Junchi Yan · Daiyue Xue · Jianping Yu · Xiaokang Yang -
2021 Spotlight: Towards Open-World Recommendation: An Inductive Model-based Collaborative Filtering Approach »
Qitian Wu · Hengrui Zhang · Xiaofeng Gao · Junchi Yan · Hongyuan Zha -
2021 Spotlight: Learning Self-Modulating Attention in Continuous Time Space with Applications to Sequential Recommendation »
Chao Chen · Haoyu Geng · Nianzu Yang · Junchi Yan · Daiyue Xue · Jianping Yu · Xiaokang Yang -
2021 Oral: Graph Neural Networks Inspired by Classical Iterative Algorithms »
Yongyi Yang · Tang Liu · Yangkun Wang · Jinjing Zhou · Quan Gan · Zhewei Wei · Zheng Zhang · Zengfeng Huang · David Wipf -
2021 Poster: Deep Latent Graph Matching »
Tianshu Yu · Runzhong Wang · Junchi Yan · baoxin Li -
2021 Spotlight: Deep Latent Graph Matching »
Tianshu Yu · Runzhong Wang · Junchi Yan · baoxin Li -
2021 Poster: Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss »
Xue Yang · Junchi Yan · Qi Ming · Wentao Wang · xiaopeng zhang · Qi Tian -
2021 Spotlight: Rethinking Rotated Object Detection with Gaussian Wasserstein Distance Loss »
Xue Yang · Junchi Yan · Qi Ming · Wentao Wang · xiaopeng zhang · Qi Tian -
2020 Poster: The Usual Suspects? Reassessing Blame for VAE Posterior Collapse »
Bin Dai · Ziyu Wang · David Wipf -
2018 Poster: Compressing Neural Networks using the Variational Information Bottelneck »
Bin Dai · Chen Zhu · Baining Guo · David Wipf -
2018 Oral: Compressing Neural Networks using the Variational Information Bottelneck »
Bin Dai · Chen Zhu · Baining Guo · David Wipf