Timezone: »
Reward signals in reinforcement learning are expensive to design and often require access to the true state which is not available in the real world. Common alternatives are usually demonstrations or goal images which can be labor-intensive to collect. On the other hand, text descriptions provide a general, natural, and low-effort way of communicating the desired task. However, prior works in learning text-conditioned policies still rely on rewards that are defined using either true state or labeled expert demonstrations. We use recent developments in building large-scale visuolanguage models like CLIP to devise a framework that generates the task reward signal just from goal text description and raw pixel observations which is then used to learn the task policy. We evaluate the proposed framework on control and robotic manipulation tasks. Finally, we distill the individual task policies into a single goal text conditioned policy that can generalize in a zero-shot manner to new tasks with unseen objects and unseen goal text descriptions.
Author Information
Parsa Mahmoudieh (UC Berkeley)
Deepak Pathak (Carnegie Mellon University)
Trevor Darrell (University of California at Berkeley)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Zero-Shot Reward Specification via Grounded Natural Language »
Wed. Jul 20th 03:40 -- 03:45 PM Room Room 307
More from the Same Authors
-
2021 : Discovering and Achieving Goals with World Models »
Russell Mendonca · Oleh Rybkin · Kostas Daniilidis · Danijar Hafner · Deepak Pathak -
2021 : Explaining Reinforcement Learning Policies through Counterfactual Trajectories »
Julius Frost · Olivia Watkins · Eric Weiner · Pieter Abbeel · Trevor Darrell · Bryan Plummer · Kate Saenko -
2023 : Internet Explorer: Targeted Representation Learning on the Open Web »
Alexander Li · Ellis Brown · Alexei Efros · Deepak Pathak -
2023 : LLM-grounded Text-to-Image Diffusion Models »
Long (Tony) Lian · Boyi Li · Adam Yala · Trevor Darrell -
2023 : Your Diffusion Model is Secretly a Zero-Shot Classifier »
Alexander Li · Mihir Prabhudesai · Shivam Duggal · Ellis Brown · Deepak Pathak -
2023 : Test-time Adaptation with Diffusion Models »
Mihir Prabhudesai · Tsung-Wei Ke · Alexander Li · Deepak Pathak · Katerina Fragkiadaki -
2023 Poster: Efficient RL via Disentangled Environment and Agent Representations »
Kevin Gmelin · Shikhar Bahl · Russell Mendonca · Deepak Pathak -
2023 Oral: Efficient RL via Disentangled Environment and Agent Representations »
Kevin Gmelin · Shikhar Bahl · Russell Mendonca · Deepak Pathak -
2023 Poster: Internet Explorer: Targeted Representation Learning on the Open Web »
Alexander Li · Ellis Brown · Alexei Efros · Deepak Pathak -
2023 Poster: Test-time Adaptation with Slot-Centric Models »
Mihir Prabhudesai · Anirudh Goyal · Sujoy Paul · Sjoerd van Steenkiste · Mehdi S. M. Sajjadi · Gaurav Aggarwal · Thomas Kipf · Deepak Pathak · Katerina Fragkiadaki -
2022 : Back to the Source: Test-Time Diffusion-Driven Adaptation »
Jin Gao · Jialing Zhang · Xihui Liu · Trevor Darrell · Evan Shelhamer · Dequan Wang -
2022 Poster: Visual Attention Emerges from Recurrent Sparse Reconstruction »
Baifeng Shi · Yale Song · Neel Joshi · Trevor Darrell · Xin Wang -
2022 Poster: Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents »
Wenlong Huang · Pieter Abbeel · Deepak Pathak · Igor Mordatch -
2022 Spotlight: Visual Attention Emerges from Recurrent Sparse Reconstruction »
Baifeng Shi · Yale Song · Neel Joshi · Trevor Darrell · Xin Wang -
2022 Spotlight: Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents »
Wenlong Huang · Pieter Abbeel · Deepak Pathak · Igor Mordatch -
2022 Poster: REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer »
Xingyu Liu · Deepak Pathak · Kris Kitani -
2022 Oral: REvolveR: Continuous Evolutionary Models for Robot-to-robot Policy Transfer »
Xingyu Liu · Deepak Pathak · Kris Kitani -
2021 Workshop: ICML Workshop on Human in the Loop Learning (HILL) »
Trevor Darrell · Xin Wang · Li Erran Li · Fisher Yu · Zeynep Akata · Wenwu Zhu · Pradeep Ravikumar · Shiji Zhou · Shanghang Zhang · Kalesha Bullard -
2021 : Oral Presentation: Discovering and Achieving Goals with World Models »
Oleh Rybkin · Deepak Pathak -
2021 Poster: Differentiable Spatial Planning using Transformers »
Devendra Singh Chaplot · Deepak Pathak · Jitendra Malik -
2021 Poster: Compositional Video Synthesis with Action Graphs »
Amir Bar · Roi Herzig · Xiaolong Wang · Anna Rohrbach · Gal Chechik · Trevor Darrell · Amir Globerson -
2021 Spotlight: Compositional Video Synthesis with Action Graphs »
Amir Bar · Roi Herzig · Xiaolong Wang · Anna Rohrbach · Gal Chechik · Trevor Darrell · Amir Globerson -
2021 Spotlight: Differentiable Spatial Planning using Transformers »
Devendra Singh Chaplot · Deepak Pathak · Jitendra Malik -
2021 Poster: Unsupervised Learning of Visual 3D Keypoints for Control »
Boyuan Chen · Pieter Abbeel · Deepak Pathak -
2021 Spotlight: Unsupervised Learning of Visual 3D Keypoints for Control »
Boyuan Chen · Pieter Abbeel · Deepak Pathak -
2020 Workshop: 2nd ICML Workshop on Human in the Loop Learning (HILL) »
Shanghang Zhang · Xin Wang · Fisher Yu · Jiajun Wu · Trevor Darrell -
2020 Poster: Video Prediction via Example Guidance »
Jingwei Xu · Harry (Huazhe) Xu · Bingbing Ni · Xiaokang Yang · Trevor Darrell -
2020 Poster: One Policy to Control Them All: Shared Modular Policies for Agent-Agnostic Control »
Wenlong Huang · Igor Mordatch · Deepak Pathak -
2020 Poster: Frustratingly Simple Few-Shot Object Detection »
Xin Wang · Thomas Huang · Joseph E Gonzalez · Trevor Darrell · Fisher Yu -
2020 Poster: Planning to Explore via Self-Supervised World Models »
Ramanan Sekar · Oleh Rybkin · Kostas Daniilidis · Pieter Abbeel · Danijar Hafner · Deepak Pathak -
2019 : Fisher Yu: "Motion and Prediction for Autonomous Driving" »
Fisher Yu · Trevor Darrell -
2019 Poster: Self-Supervised Exploration via Disagreement »
Deepak Pathak · Dhiraj Gandhi · Abhinav Gupta -
2019 Oral: Self-Supervised Exploration via Disagreement »
Deepak Pathak · Dhiraj Gandhi · Abhinav Gupta -
2018 Poster: CyCADA: Cycle-Consistent Adversarial Domain Adaptation »
Judy Hoffman · Eric Tzeng · Taesung Park · Jun-Yan Zhu · Philip Isola · Kate Saenko · Alexei Efros · Trevor Darrell -
2018 Oral: CyCADA: Cycle-Consistent Adversarial Domain Adaptation »
Judy Hoffman · Eric Tzeng · Taesung Park · Jun-Yan Zhu · Philip Isola · Kate Saenko · Alexei Efros · Trevor Darrell -
2018 Poster: Investigating Human Priors for Playing Video Games »
Rachit Dubey · Pulkit Agrawal · Deepak Pathak · Tom Griffiths · Alexei Efros -
2018 Oral: Investigating Human Priors for Playing Video Games »
Rachit Dubey · Pulkit Agrawal · Deepak Pathak · Tom Griffiths · Alexei Efros -
2017 Poster: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell -
2017 Talk: Curiosity-driven Exploration by Self-supervised Prediction »
Deepak Pathak · Pulkit Agrawal · Alexei Efros · Trevor Darrell