Timezone: »
Meta-learning tries to learn meta-knowledge from a large number of tasks. However, the stochastic meta-gradient can have large variance due to data sampling (from each task) and task sampling (from the whole task distribution), leading to slow convergence. In this paper, we propose a novel approach that integrates variance reduction with first-order meta-learning algorithms such as Reptile. It retains the bilevel formulation which better captures the structure of meta-learning, but does not require storing the vast number of task-specific parameters in general bilevel variance reduction methods. Theoretical results show that it has fast convergence rate due to variance reduction. Experiments on benchmark few-shot classification data sets demonstrate its effectiveness over state-of-the-art meta-learning algorithms with and without variance reduction.
Author Information
Hansi Yang (The Hong Kong University of Science and Technology)
James Kwok (Hong Kong University of Science and Technology)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Efficient Variance Reduction for Meta-learning »
Tue. Jul 19th through Wed the 20th Room Hall E #534
More from the Same Authors
-
2023 Poster: Effective Structured Prompting by Meta-Learning and Representative Verbalizer »
Weisen Jiang · Yu Zhang · James Kwok -
2023 Poster: Non-autoregressive Conditional Diffusion Models for Time Series Prediction »
Lifeng Shen · James Kwok -
2023 Poster: Nonparametric Iterative Machine Teaching »
CHEN ZHANG · Xiaofeng Cao · Weiyang Liu · Ivor Tsang · James Kwok -
2022 Poster: Subspace Learning for Effective Meta-Learning »
Weisen Jiang · James Kwok · Yu Zhang -
2022 Spotlight: Subspace Learning for Effective Meta-Learning »
Weisen Jiang · James Kwok · Yu Zhang -
2021 Poster: SparseBERT: Rethinking the Importance Analysis in Self-attention »
Han Shi · Jiahui Gao · Xiaozhe Ren · Hang Xu · Xiaodan Liang · Zhenguo Li · James Kwok -
2021 Spotlight: SparseBERT: Rethinking the Importance Analysis in Self-attention »
Han Shi · Jiahui Gao · Xiaozhe Ren · Hang Xu · Xiaodan Liang · Zhenguo Li · James Kwok -
2020 Poster: Searching to Exploit Memorization Effect in Learning with Noisy Labels »
QUANMING YAO · Hansi Yang · Bo Han · Gang Niu · James Kwok -
2019 Poster: Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations »
Quanming Yao · James Kwok · Bo Han -
2019 Oral: Efficient Nonconvex Regularized Tensor Completion with Structure-aware Proximal Iterations »
Quanming Yao · James Kwok · Bo Han -
2018 Poster: Online Convolutional Sparse Coding with Sample-Dependent Dictionary »
Yaqing WANG · Quanming Yao · James Kwok · Lionel NI -
2018 Poster: Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data »
Shuai Zheng · James Kwok -
2018 Oral: Lightweight Stochastic Optimization for Minimizing Finite Sums with Infinite Data »
Shuai Zheng · James Kwok -
2018 Oral: Online Convolutional Sparse Coding with Sample-Dependent Dictionary »
Yaqing WANG · Quanming Yao · James Kwok · Lionel NI -
2017 Poster: Follow the Moving Leader in Deep Learning »
Shuai Zheng · James Kwok -
2017 Talk: Follow the Moving Leader in Deep Learning »
Shuai Zheng · James Kwok