Timezone: »
Transformer has achieved great successes in learning vision and language representation, which is general across various downstream tasks. In visual control, learning transferable state representation that can transfer between different control tasks is important to reduce the training sample size. However, porting Transformer to sample-efficient visual control remains a challenging and unsolved problem.To this end, we propose a novel Control Transformer (CtrlFormer), possessing many appealing benefits that prior arts do not have. Firstly, CtrlFormer jointly learns self-attention mechanisms between visual tokens and policy tokens among different control tasks, where multitask representation can be learned and transferred without catastrophic forgetting. Secondly, we carefully design a contrastive reinforcement learning paradigm to train CtrlFormer, enabling it to achieve high sample efficiency, which is important in control problems. For example, in the DMControl benchmark, unlike recent advanced methods that failed by producing a zero score in the ``Cartpole'' task after transfer learning with 100k samples, CtrlFormer can achieve a state-of-the-art score with only 100k samples while maintaining the performance of previous tasks. The code and models are released in our project homepage.
Author Information
Yao Mu (The University of Hong Kong)
I am currently a Ph.D. Candidate of Computer Science at the University of Hong Kong, supervised by Prof. Ping Luo. Previously I obtained the M.Phil Degree under the supervision of Prof. Bo Cheng and Prof. Shengbo Li at the Intelligent Driving Laboratory from Tsinghua University in June 2021. Research Interests: Reinforcement Learning, Representation Learning, Autonomous Driving, and Computer Vision.
Shoufa Chen (The University of Hong Kong)
Mingyu Ding (The University of Hong Kong)
Jianyu Chen (Tsinghua University)
Runjian Chen (The University of Hong Kong)
Ping Luo (The University of Hong Kong)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: CtrlFormer: Learning Transferable State Representation for Visual Control via Transformer »
Tue. Jul 19th 06:10 -- 06:15 PM Room Room 309
More from the Same Authors
-
2023 Poster: $\pi$-Tuning: Transferring Multimodal Foundation Models with Optimal Multi-task Interpolation »
CHENGYUE WU · Teng Wang · Yixiao Ge · Zeyu Lu · Ruisong Zhou · Ying Shan · Ping Luo -
2023 Poster: MetaDiffuser: Diffusion Model as Conditional Planner for Offline Meta-RL »
Fei Ni · Jianye Hao · Yao Mu · Yifu Yuan · Yan Zheng · Bin Wang · Zhixuan Liang -
2023 Poster: AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners »
Zhixuan Liang · Yao Mu · Mingyu Ding · Fei Ni · Masayoshi Tomizuka · Ping Luo -
2023 Poster: ChiPFormer: Transferable Chip Placement via Offline Decision Transformer »
Yao LAI · Jinxin Liu · Zhentao Tang · Bin Wang · Jianye Hao · Ping Luo -
2023 Oral: AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners »
Zhixuan Liang · Yao Mu · Mingyu Ding · Fei Ni · Masayoshi Tomizuka · Ping Luo -
2022 Poster: Flow-based Recurrent Belief State Learning for POMDPs »
Xiaoyu Chen · Yao Mu · Ping Luo · Shengbo Li · Jianyu Chen -
2022 Spotlight: Flow-based Recurrent Belief State Learning for POMDPs »
Xiaoyu Chen · Yao Mu · Ping Luo · Shengbo Li · Jianyu Chen -
2022 Poster: Reachability Constrained Reinforcement Learning »
Dongjie Yu · Haitong Ma · Shengbo Li · Jianyu Chen -
2022 Spotlight: Reachability Constrained Reinforcement Learning »
Dongjie Yu · Haitong Ma · Shengbo Li · Jianyu Chen -
2022 Poster: VLMixer: Unpaired Vision-Language Pre-training via Cross-Modal CutMix »
Teng Wang · Wenhao Jiang · Zhichao Lu · Feng Zheng · Ran Cheng · chengguo yin · Ping Luo -
2022 Spotlight: VLMixer: Unpaired Vision-Language Pre-training via Cross-Modal CutMix »
Teng Wang · Wenhao Jiang · Zhichao Lu · Feng Zheng · Ran Cheng · chengguo yin · Ping Luo -
2021 Poster: Differentiable Dynamic Quantization with Mixed Precision and Adaptive Resolution »
zhaoyang zhang · Wenqi Shao · Jinwei Gu · Xiaogang Wang · Ping Luo -
2021 Spotlight: Differentiable Dynamic Quantization with Mixed Precision and Adaptive Resolution »
zhaoyang zhang · Wenqi Shao · Jinwei Gu · Xiaogang Wang · Ping Luo -
2021 Poster: What Makes for End-to-End Object Detection? »
Peize Sun · Yi Jiang · Enze Xie · Wenqi Shao · Zehuan Yuan · Changhu Wang · Ping Luo -
2021 Spotlight: What Makes for End-to-End Object Detection? »
Peize Sun · Yi Jiang · Enze Xie · Wenqi Shao · Zehuan Yuan · Changhu Wang · Ping Luo -
2020 Poster: Channel Equilibrium Networks for Learning Deep Representation »
Wenqi Shao · Shitao Tang · Xingang Pan · Ping Tan · Xiaogang Wang · Ping Luo -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 : Poster Session 1 (all papers) »
Matilde Gargiani · Yochai Zur · Chaim Baskin · Evgenii Zheltonozhskii · Liam Li · Ameet Talwalkar · Xuedong Shang · Harkirat Singh Behl · Atilim Gunes Baydin · Ivo Couckuyt · Tom Dhaene · Chieh Lin · Wei Wei · Min Sun · Orchid Majumder · Michele Donini · Yoshihiko Ozaki · Ryan P. Adams · Christian Geißler · Ping Luo · zhanglin peng · · Ruimao Zhang · John Langford · Rich Caruana · Debadeepta Dey · Charles Weill · Xavi Gonzalvo · Scott Yang · Scott Yak · Eugen Hotaj · Vladimir Macko · Mehryar Mohri · Corinna Cortes · Stefan Webb · Jonathan Chen · Martin Jankowiak · Noah Goodman · Aaron Klein · Frank Hutter · Mojan Javaheripi · Mohammad Samragh · Sungbin Lim · Taesup Kim · SUNGWOONG KIM · Michael Volpp · Iddo Drori · Yamuna Krishnamurthy · Kyunghyun Cho · Stanislaw Jastrzebski · Quentin de Laroussilhe · Mingxing Tan · Xiao Ma · Neil Houlsby · Andrea Gesmundo · Zalán Borsos · Krzysztof Maziarz · Felipe Petroski Such · Joel Lehman · Kenneth Stanley · Jeff Clune · Pieter Gijsbers · Joaquin Vanschoren · Felix Mohr · Eyke Hüllermeier · Zheng Xiong · Wenpeng Zhang · Wenwu Zhu · Weijia Shao · Aleksandra Faust · Michal Valko · Michael Y Li · Hugo Jair Escalante · Marcel Wever · Andrey Khorlin · Tara Javidi · Anthony Francis · Saurajit Mukherjee · Jungtaek Kim · Michael McCourt · Saehoon Kim · Tackgeun You · Seungjin Choi · Nicolas Knudde · Alexander Tornede · Ghassen Jerfel -
2019 Poster: Differentiable Dynamic Normalization for Learning Deep Representation »
Ping Luo · Peng Zhanglin · Shao Wenqi · Zhang ruimao · Ren jiamin · Wu lingyun -
2019 Oral: Differentiable Dynamic Normalization for Learning Deep Representation »
Ping Luo · Peng Zhanglin · Shao Wenqi · Zhang ruimao · Ren jiamin · Wu lingyun -
2017 Poster: Learning Deep Architectures via Generalized Whitened Neural Networks »
Ping Luo -
2017 Talk: Learning Deep Architectures via Generalized Whitened Neural Networks »
Ping Luo