Timezone: »

 
Spotlight
Hindering Adversarial Attacks with Implicit Neural Representations
Andrei A Rusu · Dan Andrei Calian · Sven Gowal · Raia Hadsell

Tue Jul 19 08:50 AM -- 08:55 AM (PDT) @ None

We introduce the Lossy Implicit Network Activation Coding (LINAC) defence, an input transformation which successfully hinders several common adversarial attacks on CIFAR-10 classifiers for perturbations up to 8/255 in Linf norm and 0.5 in L2 norm. Implicit neural representations are used to approximately encode pixel colour intensities in 2D images such that classifiers trained on transformed data appear to have robustness to small perturbations without adversarial training or large drops in performance. The seed of the random number generator used to initialise and train the implicit neural representation turns out to be necessary information for stronger generic attacks, suggesting its role as a private key. We devise a Parametric Bypass Approximation (PBA) attack strategy for key-based defences, which successfully invalidates an existing method in this category. Interestingly, our LINAC defence also hinders some transfer and adaptive attacks, including our novel PBA strategy. Our results emphasise the importance of a broad range of customised attacks despite apparent robustness according to standard evaluations.

Author Information

Andrei A Rusu (DeepMind)
Dan Andrei Calian (DeepMind)
Sven Gowal (DeepMind)
Raia Hadsell (DeepMind)

Raia Hadsell, a senior research scientist at DeepMind, has worked on deep learning and robotics problems for over 10 years. Her early research developed the notion of manifold learning using Siamese networks, which has been used extensively for invariant feature learning. After completing a PhD with Yann LeCun, which featured a self-supervised deep learning vision system for a mobile robot, her research continued at Carnegie Mellon’s Robotics Institute and SRI International, and in early 2014 she joined DeepMind in London to study artificial general intelligence. Her current research focuses on the challenge of continual learning for AI agents and robotic systems. While deep RL algorithms are capable of attaining superhuman performance on single tasks, they cannot transfer that performance to additional tasks, especially if experienced sequentially. She has proposed neural approaches such as policy distillation, progressive nets, and elastic weight consolidation to solve the problem of catastrophic forgetting and improve transfer learning.

Related Events (a corresponding poster, oral, or spotlight)

More from the Same Authors