Timezone: »
This paper introduces a novel and generic framework to solve the flagship task of supervised labeled graph prediction by leveraging Optimal Transport tools. We formulate the problem as regression with the Fused Gromov-Wasserstein (FGW) loss and propose a predictive model relying on a FGW barycenter whose weights depend on inputs. First we introduce a non-parametric estimator based on kernel ridge regression for which theoretical results such as consistency and excess risk bound are proved. Next we propose an interpretable parametric model where the barycenter weights are modeled with a neural network and the graphs on which the FGW barycenter is calculated are additionally learned. Numerical experiments show the strength of the method and its ability to interpolate in the labeled graph space on simulated data and on a difficult metabolic identification problem where it can reach very good performance with very little engineering.
Author Information
Luc Brogat-Motte (Télécom Paris)
Rémi Flamary (École Polytechnique)
Celine Brouard (INRAE)
Juho Rousu (Aalto University)
Florence d'Alché-Buc (Télécom Paris, Institut Polytechnique de Paris)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Learning to Predict Graphs with Fused Gromov-Wasserstein Barycenters »
Thu. Jul 21st through Fri the 22nd Room Hall E #526
More from the Same Authors
-
2022 Poster: Functional Output Regression with Infimal Convolution: Exploring the Huber and $\epsilon$-insensitive Losses »
Alex Lambert · Dimitri Bouche · Zoltan Szabo · Florence d'Alché-Buc -
2022 Spotlight: Functional Output Regression with Infimal Convolution: Exploring the Huber and $\epsilon$-insensitive Losses »
Alex Lambert · Dimitri Bouche · Zoltan Szabo · Florence d'Alché-Buc -
2021 Poster: Online Graph Dictionary Learning »
Cédric Vincent-Cuaz · Titouan Vayer · Rémi Flamary · Marco Corneli · Nicolas Courty -
2021 Spotlight: Online Graph Dictionary Learning »
Cédric Vincent-Cuaz · Titouan Vayer · Rémi Flamary · Marco Corneli · Nicolas Courty -
2021 Poster: Unbalanced minibatch Optimal Transport; applications to Domain Adaptation »
Kilian Fatras · Thibault Séjourné · Rémi Flamary · Nicolas Courty -
2021 Spotlight: Unbalanced minibatch Optimal Transport; applications to Domain Adaptation »
Kilian Fatras · Thibault Séjourné · Rémi Flamary · Nicolas Courty -
2020 Poster: Duality in RKHSs with Infinite Dimensional Outputs: Application to Robust Losses »
Pierre Laforgue · Alex Lambert · Luc Brogat-Motte · Florence d'Alche-Buc -
2019 Poster: Large-Scale Sparse Kernel Canonical Correlation Analysis »
Viivi Uurtio · Sahely Bhadra · Juho Rousu -
2019 Oral: Large-Scale Sparse Kernel Canonical Correlation Analysis »
Viivi Uurtio · Sahely Bhadra · Juho Rousu -
2018 Poster: Structured Output Learning with Abstention: Application to Accurate Opinion Prediction »
Alexandre Garcia · Telecom-ParisTech Chloé Clavel · Slim Essid · Florence d'Alche-Buc -
2018 Oral: Structured Output Learning with Abstention: Application to Accurate Opinion Prediction »
Alexandre Garcia · Telecom-ParisTech Chloé Clavel · Slim Essid · Florence d'Alche-Buc