Timezone: »
Spotlight
Identity-Disentangled Adversarial Augmentation for Self-supervised Learning
Kaiwen Yang · Tianyi Zhou · Xinmei Tian · Dacheng Tao
Data augmentation is critical to contrastive self-supervised learning, whose goal is to distinguish a sample's augmentations (positives) from other samples (negatives). However, strong augmentations may change the sample-identity of the positives, while weak augmentation produces easy positives/negatives leading to nearly-zero loss and ineffective learning. In this paper, we study a simple adversarial augmentation method that can modify training data to be hard positives/negatives without distorting the key information about their original identities. In particular, we decompose a sample $x$ to be its variational auto-encoder (VAE) reconstruction $G(x)$ plus the residual $R(x)=x-G(x)$, where $R(x)$ retains most identity-distinctive information due to an information-theoretic interpretation of the VAE objective. We then adversarially perturb $G(x)$ in the VAE's bottleneck space and adds it back to the original $R(x)$ as an augmentation, which is therefore sufficiently challenging for contrastive learning and meanwhile preserves the sample identity intact. We apply this ``identity-disentangled adversarial augmentation (IDAA)'' to different self-supervised learning methods. On multiple benchmark datasets, IDAA consistently improves both their efficiency and generalization performance. We further show that IDAA learned on a dataset can be transferred to other datasets. Code is available at \href{https://github.com/kai-wen-yang/IDAA}{https://github.com/kai-wen-yang/IDAA}.
Author Information
Kaiwen Yang (University of Science and Technology of China)
Tianyi Zhou (University of Washington)
Xinmei Tian (University of Science and Technology of China)
Dacheng Tao
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Poster: Identity-Disentangled Adversarial Augmentation for Self-supervised Learning »
Thu. Jul 21st through Fri the 22nd Room Hall E #510
More from the Same Authors
-
2023 : Learning Better with Less: Effective Augmentation for Sample-Efficient Visual Reinforcement Learning »
Guozheng Ma · · Haoyu Wang · Lu Li · Zilin Wang · Zhen Wang · Li Shen · Xueqian Wang · Dacheng Tao -
2023 Oral: Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape »
Yan Sun · Li Shen · Shixiang Chen · Liang Ding · Dacheng Tao -
2023 Oral: Tilted Sparse Additive Models »
Yingjie Wang · Hong Chen · Weifeng Liu · Fengxiang He · Tieliang Gong · YouCheng Fu · Dacheng Tao -
2023 Poster: Structured Cooperative Learning with Graphical Model Priors »
Shuangtong Li · Tianyi Zhou · Xinmei Tian · Dacheng Tao -
2023 Poster: Tilted Sparse Additive Models »
Yingjie Wang · Hong Chen · Weifeng Liu · Fengxiang He · Tieliang Gong · YouCheng Fu · Dacheng Tao -
2023 Poster: Moderately Distributional Exploration for Domain Generalization »
Rui Dai · Yonggang Zhang · zhen fang · Bo Han · Xinmei Tian -
2023 Poster: Decentralized SGD and Average-direction SAM are Asymptotically Equivalent »
Tongtian Zhu · Fengxiang He · Kaixuan Chen · Mingli Song · Dacheng Tao -
2023 Poster: Improving the Model Consistency of Decentralized Federated Learning »
Yifan Shi · Li Shen · Kang Wei · Yan Sun · Bo Yuan · Xueqian Wang · Dacheng Tao -
2023 Poster: Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape »
Yan Sun · Li Shen · Shixiang Chen · Liang Ding · Dacheng Tao -
2023 Poster: Learning to Learn from APIs: Black-Box Data-Free Meta-Learning »
Zixuan Hu · Li Shen · Zhenyi Wang · Baoyuan Wu · Chun Yuan · Dacheng Tao -
2022 Poster: EAT-C: Environment-Adversarial sub-Task Curriculum for Efficient Reinforcement Learning »
Shuang Ao · Tianyi Zhou · Jing Jiang · Guodong Long · Xuan Song · Chengqi Zhang -
2022 Spotlight: EAT-C: Environment-Adversarial sub-Task Curriculum for Efficient Reinforcement Learning »
Shuang Ao · Tianyi Zhou · Jing Jiang · Guodong Long · Xuan Song · Chengqi Zhang -
2022 Poster: DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training »
Rong Dai · Li Shen · Fengxiang He · Xinmei Tian · Dacheng Tao -
2022 Spotlight: DisPFL: Towards Communication-Efficient Personalized Federated Learning via Decentralized Sparse Training »
Rong Dai · Li Shen · Fengxiang He · Xinmei Tian · Dacheng Tao -
2022 Poster: Topology-aware Generalization of Decentralized SGD »
Tongtian Zhu · Fengxiang He · Lan Zhang · Zhengyang Niu · Mingli Song · Dacheng Tao -
2022 Spotlight: Topology-aware Generalization of Decentralized SGD »
Tongtian Zhu · Fengxiang He · Lan Zhang · Zhengyang Niu · Mingli Song · Dacheng Tao -
2020 Poster: Dual-Path Distillation: A Unified Framework to Improve Black-Box Attacks »
Yonggang Zhang · Ya Li · Tongliang Liu · Xinmei Tian -
2017 Poster: Beyond Filters: Compact Feature Map for Portable Deep Model »
Yunhe Wang · Chang Xu · Chao Xu · Dacheng Tao -
2017 Talk: Beyond Filters: Compact Feature Map for Portable Deep Model »
Yunhe Wang · Chang Xu · Chao Xu · Dacheng Tao -
2017 Poster: Algorithmic Stability and Hypothesis Complexity »
Tongliang Liu · Gábor Lugosi · Gergely Neu · Dacheng Tao -
2017 Talk: Algorithmic Stability and Hypothesis Complexity »
Tongliang Liu · Gábor Lugosi · Gergely Neu · Dacheng Tao