Timezone: »
The performance of a language model has been shown to be effectively modeled as a power-law in its parameter count. Here we study the scaling behaviors of Routing Networks: architectures that conditionally use only a subset of their parameters while processing an input. For these models, parameter count and computational requirement form two independent axes along which an increase leads to better performance. In this work we derive and justify scaling laws defined on these two variables which generalize those known for standard language models and describe the performance of a wide range of routing architectures trained via three different techniques. Afterwards we provide two applications of these laws: first deriving an Effective Parameter Count along which all models scale at the same rate, and then using the scaling coefficients to give a quantitative comparison of the three routing techniques considered. Our analysis derives from an extensive evaluation of Routing Networks across five orders of magnitude of size, including models with hundreds of experts and hundreds of billions of parameters.
Author Information
Aidan Clark (OpenAI)
Diego de Las Casas (DeepMind)
Aurelia Guy (Google Inc.)
Arthur Mensch (Deepmind)
Michela Paganini (DeepMind)
Jordan Hoffmann (DeepMind)
Bogdan Damoc (DeepMind)
Blake Hechtman (Google)
Trevor Cai (DeepMind)
Sebastian Borgeaud (DeepMind)
George van den Driessche (DeepMind)
Eliza Rutherford (DeepMind)
Tom Hennigan (DeepMind)
Matthew Johnson (Google Brain)
Albin Cassirer (DeepMind)
Chris Jones (DeepMind)
Elena Buchatskaya (DeepMind)
David Budden (DeepMind)
Laurent Sifre (DeepMind)
Simon Osindero (DeepMind)
Oriol Vinyals (Google DeepMind)
Oriol Vinyals is a Research Scientist at Google. He works in deep learning with the Google Brain team. Oriol holds a Ph.D. in EECS from University of California, Berkeley, and a Masters degree from University of California, San Diego. He is a recipient of the 2011 Microsoft Research PhD Fellowship. He was an early adopter of the new deep learning wave at Berkeley, and in his thesis he focused on non-convex optimization and recurrent neural networks. At Google Brain he continues working on his areas of interest, which include artificial intelligence, with particular emphasis on machine learning, language, and vision.
Marc'Aurelio Ranzato (Deepmind)
Jack Rae (DeepMind)
Erich Elsen (Google)
Koray Kavukcuoglu (DeepMind)
Karen Simonyan (Inflection AI)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Oral: Unified Scaling Laws for Routed Language Models »
Tue. Jul 19th 03:05 -- 03:25 PM Room Room 327 - 329
More from the Same Authors
-
2023 Poster: Neural Algorithmic Reasoning with Causal Regularisation »
Beatrice Bevilacqua · Kyriacos Nikiforou · Borja Ibarz · Ioana Bica · Michela Paganini · Charles Blundell · Jovana Mitrovic · Petar Veličković -
2022 : Chinchillas, Flamingos, and Gatos: Few-Shot Learning through Pre-training »
Oriol Vinyals -
2022 Poster: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Poster: General-purpose, long-context autoregressive modeling with Perceiver AR »
Curtis Hawthorne · Drew Jaegle · Cătălina Cangea · Sebastian Borgeaud · Charlie Nash · Mateusz Malinowski · Sander Dieleman · Oriol Vinyals · Matthew Botvinick · Ian Simon · Hannah Sheahan · Neil Zeghidour · Jean-Baptiste Alayrac · Joao Carreira · Jesse Engel -
2022 Spotlight: Retrieval-Augmented Reinforcement Learning »
Anirudh Goyal · Abe Friesen Friesen · Andrea Banino · Theophane Weber · Nan Rosemary Ke · Adrià Puigdomenech Badia · Arthur Guez · Mehdi Mirza · Peter Humphreys · Ksenia Konyushkova · Michal Valko · Simon Osindero · Timothy Lillicrap · Nicolas Heess · Charles Blundell -
2022 Spotlight: General-purpose, long-context autoregressive modeling with Perceiver AR »
Curtis Hawthorne · Drew Jaegle · Cătălina Cangea · Sebastian Borgeaud · Charlie Nash · Mateusz Malinowski · Sander Dieleman · Oriol Vinyals · Matthew Botvinick · Ian Simon · Hannah Sheahan · Neil Zeghidour · Jean-Baptiste Alayrac · Joao Carreira · Jesse Engel -
2022 Poster: The CLRS Algorithmic Reasoning Benchmark »
Petar Veličković · Adrià Puigdomenech Badia · David Budden · Razvan Pascanu · Andrea Banino · Misha Dashevskiy · Raia Hadsell · Charles Blundell -
2022 Poster: The State of Sparse Training in Deep Reinforcement Learning »
Laura Graesser · Utku Evci · Erich Elsen · Pablo Samuel Castro -
2022 Poster: Model-Value Inconsistency as a Signal for Epistemic Uncertainty »
Angelos Filos · Eszter Vértes · Zita Marinho · Gregory Farquhar · Diana Borsa · Abe Friesen · Feryal Behbahani · Tom Schaul · Andre Barreto · Simon Osindero -
2022 Spotlight: The State of Sparse Training in Deep Reinforcement Learning »
Laura Graesser · Utku Evci · Erich Elsen · Pablo Samuel Castro -
2022 Spotlight: The CLRS Algorithmic Reasoning Benchmark »
Petar Veličković · Adrià Puigdomenech Badia · David Budden · Razvan Pascanu · Andrea Banino · Misha Dashevskiy · Raia Hadsell · Charles Blundell -
2022 Spotlight: Model-Value Inconsistency as a Signal for Epistemic Uncertainty »
Angelos Filos · Eszter Vértes · Zita Marinho · Gregory Farquhar · Diana Borsa · Abe Friesen · Feryal Behbahani · Tom Schaul · Andre Barreto · Simon Osindero -
2022 Poster: Improving Language Models by Retrieving from Trillions of Tokens »
Sebastian Borgeaud · Arthur Mensch · Jordan Hoffmann · Trevor Cai · Eliza Rutherford · Katie Millican · George van den Driessche · Jean-Baptiste Lespiau · Bogdan Damoc · Aidan Clark · Diego de Las Casas · Aurelia Guy · Jacob Menick · Roman Ring · Tom Hennigan · Saffron Huang · Loren Maggiore · Chris Jones · Albin Cassirer · Andy Brock · Michela Paganini · Geoffrey Irving · Oriol Vinyals · Simon Osindero · Karen Simonyan · Jack Rae · Erich Elsen · Laurent Sifre -
2022 Spotlight: Improving Language Models by Retrieving from Trillions of Tokens »
Sebastian Borgeaud · Arthur Mensch · Jordan Hoffmann · Trevor Cai · Eliza Rutherford · Katie Millican · George van den Driessche · Jean-Baptiste Lespiau · Bogdan Damoc · Aidan Clark · Diego de Las Casas · Aurelia Guy · Jacob Menick · Roman Ring · Tom Hennigan · Saffron Huang · Loren Maggiore · Chris Jones · Albin Cassirer · Andy Brock · Michela Paganini · Geoffrey Irving · Oriol Vinyals · Simon Osindero · Karen Simonyan · Jack Rae · Erich Elsen · Laurent Sifre -
2021 Poster: Vector Quantized Models for Planning »
Sherjil Ozair · Yazhe Li · Ali Razavi · Ioannis Antonoglou · Aäron van den Oord · Oriol Vinyals -
2021 Poster: Perceiver: General Perception with Iterative Attention »
Drew Jaegle · Felix Axel Gimeno Gil · Andy Brock · Oriol Vinyals · Andrew Zisserman · Joao Carreira -
2021 Poster: Muesli: Combining Improvements in Policy Optimization »
Matteo Hessel · Ivo Danihelka · Fabio Viola · Arthur Guez · Simon Schmitt · Laurent Sifre · Theophane Weber · David Silver · Hado van Hasselt -
2021 Spotlight: Vector Quantized Models for Planning »
Sherjil Ozair · Yazhe Li · Ali Razavi · Ioannis Antonoglou · Aäron van den Oord · Oriol Vinyals -
2021 Spotlight: Perceiver: General Perception with Iterative Attention »
Drew Jaegle · Felix Axel Gimeno Gil · Andy Brock · Oriol Vinyals · Andrew Zisserman · Joao Carreira -
2021 Spotlight: Muesli: Combining Improvements in Policy Optimization »
Matteo Hessel · Ivo Danihelka · Fabio Viola · Arthur Guez · Simon Schmitt · Laurent Sifre · Theophane Weber · David Silver · Hado van Hasselt -
2020 Poster: Rigging the Lottery: Making All Tickets Winners »
Utku Evci · Trevor Gale · Jacob Menick · Pablo Samuel Castro · Erich Elsen -
2020 Poster: Small Data, Big Decisions: Model Selection in the Small-Data Regime »
Jorg Bornschein · Francesco Visin · Simon Osindero -
2020 Poster: On the Generalization Benefit of Noise in Stochastic Gradient Descent »
Samuel Smith · Erich Elsen · Soham De -
2020 Poster: Stabilizing Transformers for Reinforcement Learning »
Emilio Parisotto · Francis Song · Jack Rae · Razvan Pascanu · Caglar Gulcehre · Siddhant Jayakumar · Max Jaderberg · Raphael Lopez Kaufman · Aidan Clark · Seb Noury · Matthew Botvinick · Nicolas Heess · Raia Hadsell -
2019 : Poster discussion »
Roman Novak · Maxime Gabella · Frederic Dreyer · Siavash Golkar · Anh Tong · Irina Higgins · Mirco Milletari · Joe Antognini · Sebastian Goldt · Adín Ramírez Rivera · Roberto Bondesan · Ryo Karakida · Remi Tachet des Combes · Michael Mahoney · Nicholas Walker · Stanislav Fort · Samuel Smith · Rohan Ghosh · Aristide Baratin · Diego Granziol · Stephen Roberts · Dmitry Vetrov · Andrew Wilson · César Laurent · Valentin Thomas · Simon Lacoste-Julien · Dar Gilboa · Daniel Soudry · Anupam Gupta · Anirudh Goyal · Yoshua Bengio · Erich Elsen · Soham De · Stanislaw Jastrzebski · Charles H Martin · Samira Shabanian · Aaron Courville · Shorato Akaho · Lenka Zdeborova · Ethan Dyer · Maurice Weiler · Pim de Haan · Taco Cohen · Max Welling · Ping Luo · zhanglin peng · Nasim Rahaman · Loic Matthey · Danilo J. Rezende · Jaesik Choi · Kyle Cranmer · Lechao Xiao · Jaehoon Lee · Yasaman Bahri · Jeffrey Pennington · Greg Yang · Jiri Hron · Jascha Sohl-Dickstein · Guy Gur-Ari -
2019 Poster: Meta-Learning Neural Bloom Filters »
Jack Rae · Sergey Bartunov · Timothy Lillicrap -
2019 Oral: Meta-Learning Neural Bloom Filters »
Jack Rae · Sergey Bartunov · Timothy Lillicrap -
2019 Poster: SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning »
Marvin Zhang · Sharad Vikram · Laura Smith · Pieter Abbeel · Matthew Johnson · Sergey Levine -
2019 Oral: SOLAR: Deep Structured Representations for Model-Based Reinforcement Learning »
Marvin Zhang · Sharad Vikram · Laura Smith · Pieter Abbeel · Matthew Johnson · Sergey Levine -
2019 Poster: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2019 Oral: Graph Matching Networks for Learning the Similarity of Graph Structured Objects »
Yujia Li · Chenjie Gu · Thomas Dullien · Oriol Vinyals · Pushmeet Kohli -
2018 Poster: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · Koray Kavukcuoglu -
2018 Poster: Mix & Match - Agent Curricula for Reinforcement Learning »
Wojciech Czarnecki · Siddhant Jayakumar · Max Jaderberg · Leonard Hasenclever · Yee Teh · Nicolas Heess · Simon Osindero · Razvan Pascanu -
2018 Poster: Parallel WaveNet: Fast High-Fidelity Speech Synthesis »
Aäron van den Oord · Yazhe Li · Igor Babuschkin · Karen Simonyan · Oriol Vinyals · Koray Kavukcuoglu · George van den Driessche · Edward Lockhart · Luis C Cobo · Florian Stimberg · Norman Casagrande · Dominik Grewe · Seb Noury · Sander Dieleman · Erich Elsen · Nal Kalchbrenner · Heiga Zen · Alex Graves · Helen King · Tom Walters · Dan Belov · Demis Hassabis -
2018 Poster: Efficient Neural Audio Synthesis »
Nal Kalchbrenner · Erich Elsen · Karen Simonyan · Seb Noury · Norman Casagrande · Edward Lockhart · Florian Stimberg · Aäron van den Oord · Sander Dieleman · Koray Kavukcuoglu -
2018 Oral: Parallel WaveNet: Fast High-Fidelity Speech Synthesis »
Aäron van den Oord · Yazhe Li · Igor Babuschkin · Karen Simonyan · Oriol Vinyals · Koray Kavukcuoglu · George van den Driessche · Edward Lockhart · Luis C Cobo · Florian Stimberg · Norman Casagrande · Dominik Grewe · Seb Noury · Sander Dieleman · Erich Elsen · Nal Kalchbrenner · Heiga Zen · Alex Graves · Helen King · Tom Walters · Dan Belov · Demis Hassabis -
2018 Oral: Efficient Neural Audio Synthesis »
Nal Kalchbrenner · Erich Elsen · Karen Simonyan · Seb Noury · Norman Casagrande · Edward Lockhart · Florian Stimberg · Aäron van den Oord · Sander Dieleman · Koray Kavukcuoglu -
2018 Oral: Mix & Match - Agent Curricula for Reinforcement Learning »
Wojciech Czarnecki · Siddhant Jayakumar · Max Jaderberg · Leonard Hasenclever · Yee Teh · Nicolas Heess · Simon Osindero · Razvan Pascanu -
2018 Oral: IMPALA: Scalable Distributed Deep-RL with Importance Weighted Actor-Learner Architectures »
Lasse Espeholt · Hubert Soyer · Remi Munos · Karen Simonyan · Vlad Mnih · Tom Ward · Yotam Doron · Vlad Firoiu · Tim Harley · Iain Dunning · Shane Legg · Koray Kavukcuoglu -
2018 Poster: Synthesizing Programs for Images using Reinforced Adversarial Learning »
Iaroslav Ganin · Tejas Kulkarni · Igor Babuschkin · S. M. Ali Eslami · Oriol Vinyals -
2018 Oral: Synthesizing Programs for Images using Reinforced Adversarial Learning »
Iaroslav Ganin · Tejas Kulkarni · Igor Babuschkin · S. M. Ali Eslami · Oriol Vinyals -
2018 Poster: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2018 Poster: Learning Implicit Generative Models with the Method of Learned Moments »
Suman Ravuri · Shakir Mohamed · Mihaela Rosca · Oriol Vinyals -
2018 Poster: Fast Parametric Learning with Activation Memorization »
Jack Rae · Chris Dyer · Peter Dayan · Timothy Lillicrap -
2018 Oral: Learning Implicit Generative Models with the Method of Learned Moments »
Suman Ravuri · Shakir Mohamed · Mihaela Rosca · Oriol Vinyals -
2018 Oral: Fast Parametric Learning with Activation Memorization »
Jack Rae · Chris Dyer · Peter Dayan · Timothy Lillicrap -
2018 Oral: Learning to search with MCTSnets »
Arthur Guez · Theophane Weber · Ioannis Antonoglou · Karen Simonyan · Oriol Vinyals · Daan Wierstra · Remi Munos · David Silver -
2017 Workshop: Video Games and Machine Learning »
Gabriel Synnaeve · Julian Togelius · Tom Schaul · Oriol Vinyals · Nicolas Usunier -
2017 Poster: Neural Message Passing for Quantum Chemistry »
Justin Gilmer · Samuel Schoenholz · Patrick F Riley · Oriol Vinyals · George Dahl -
2017 Poster: FeUdal Networks for Hierarchical Reinforcement Learning »
Alexander Vezhnevets · Simon Osindero · Tom Schaul · Nicolas Heess · Max Jaderberg · David Silver · Koray Kavukcuoglu -
2017 Poster: Neural Episodic Control »
Alexander Pritzel · Benigno Uria · Srinivasan Sriram · Adrià Puigdomenech Badia · Oriol Vinyals · Demis Hassabis · Daan Wierstra · Charles Blundell -
2017 Talk: Neural Message Passing for Quantum Chemistry »
Justin Gilmer · Samuel Schoenholz · Patrick F Riley · Oriol Vinyals · George Dahl -
2017 Talk: Neural Episodic Control »
Alexander Pritzel · Benigno Uria · Srinivasan Sriram · Adrià Puigdomenech Badia · Oriol Vinyals · Demis Hassabis · Daan Wierstra · Charles Blundell -
2017 Talk: FeUdal Networks for Hierarchical Reinforcement Learning »
Alexander Vezhnevets · Simon Osindero · Tom Schaul · Nicolas Heess · Max Jaderberg · David Silver · Koray Kavukcuoglu -
2017 Poster: Decoupled Neural Interfaces using Synthetic Gradients »
Max Jaderberg · Wojciech Czarnecki · Simon Osindero · Oriol Vinyals · Alex Graves · David Silver · Koray Kavukcuoglu -
2017 Poster: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu -
2017 Poster: Understanding Synthetic Gradients and Decoupled Neural Interfaces »
Wojciech Czarnecki · Grzegorz Świrszcz · Max Jaderberg · Simon Osindero · Oriol Vinyals · Koray Kavukcuoglu -
2017 Poster: Video Pixel Networks »
Nal Kalchbrenner · Karen Simonyan · Aäron van den Oord · Ivo Danihelka · Oriol Vinyals · Alex Graves · Koray Kavukcuoglu -
2017 Talk: Automated Curriculum Learning for Neural Networks »
Alex Graves · Marc Bellemare · Jacob Menick · Remi Munos · Koray Kavukcuoglu -
2017 Talk: Video Pixel Networks »
Nal Kalchbrenner · Karen Simonyan · Aäron van den Oord · Ivo Danihelka · Oriol Vinyals · Alex Graves · Koray Kavukcuoglu -
2017 Talk: Understanding Synthetic Gradients and Decoupled Neural Interfaces »
Wojciech Czarnecki · Grzegorz Świrszcz · Max Jaderberg · Simon Osindero · Oriol Vinyals · Koray Kavukcuoglu -
2017 Talk: Decoupled Neural Interfaces using Synthetic Gradients »
Max Jaderberg · Wojciech Czarnecki · Simon Osindero · Oriol Vinyals · Alex Graves · David Silver · Koray Kavukcuoglu -
2017 Tutorial: Sequence-To-Sequence Modeling with Neural Networks »
Oriol Vinyals · Navdeep Jaitly