Timezone: »
Poster
Provably Adversarially Robust Nearest Prototype Classifiers
Václav Voráček · Matthias Hein
Nearest prototype classifiers (NPCs) assign to each input point the label of the nearest prototype with respect to a chosen distance metric. A direct advantage of NPCs is that the decisions are interpretable. Previous work could provide lower bounds on the minimal adversarial perturbation in the $\ell_p$-threat model when using the same $\ell_p$-distance for the NPCs. In this paper we provide a complete discussion on the complexity when using $\ell_p$-distances for decision and $\ell_q$-threat models for certification for $p,q \in \{1,2,\infty\}$. In particular we provide scalable algorithms for the \emph{exact} computation of the minimal adversarial perturbation when using $\ell_2$-distance and improved lower bounds in other cases. Using efficient improved lower bounds we train our \textbf{P}rovably adversarially robust \textbf{NPC} (PNPC), for MNIST which have better $\ell_2$-robustness guarantees than neural networks. Additionally, we show up to our knowledge the first certification results w.r.t. to the LPIPS perceptual metric which has been argued to be a more realistic threat model for image classification than $\ell_p$-balls. Our PNPC has on CIFAR10 higher certified robust accuracy than the empirical robust accuracy reported in \cite{laidlaw2021perceptual}. The code is available in our~\href{https://github.com/vvoracek/Provably-Adversarially-Robust-Nearest-Prototype-Classifiers}{repository}.
Author Information
Václav Voráček (University of Tübingen)
Matthias Hein (University of Tübingen)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: Provably Adversarially Robust Nearest Prototype Classifiers »
Tue. Jul 19th 02:55 -- 03:00 PM Room Hall G
More from the Same Authors
-
2022 : Provably Adversarially Robust Detection of Out-of-Distribution Data (Almost) for Free »
Alexander Meinke · Julian Bitterwolf · Matthias Hein -
2022 : Sound randomized smoothing in floating-point arithmetics »
Václav Voráček · Matthias Hein -
2022 : Sound randomized smoothing in floating-point arithmetics »
Václav Voráček · Matthias Hein -
2022 : Classifiers Should Do Well Even on Their Worst Classes »
Julian Bitterwolf · Alexander Meinke · Valentyn Boreiko · Matthias Hein -
2022 : Lost in Translation: Modern Image Classifiers still degrade even under simple Translations »
Leander Kurscheidt · Matthias Hein -
2023 : Robust Semantic Segmentation: Strong Adversarial Attacks and Fast Training of Robust Models »
Francesco Croce · Naman Singh · Matthias Hein -
2023 : In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation »
Julian Bitterwolf · Maximilian Müller · Matthias Hein -
2023 Poster: In or Out? Fixing ImageNet Out-of-Distribution Detection Evaluation »
Julian Bitterwolf · Maximilian Müller · Matthias Hein -
2023 Poster: A Modern Look at the Relationship between Sharpness and Generalization »
Maksym Andriushchenko · Francesco Croce · Maximilian Müller · Matthias Hein · Nicolas Flammarion -
2023 Poster: Improving l1-Certified Robustness via Randomized Smoothing by Leveraging Box Constraints »
Václav Voráček · Matthias Hein -
2022 : Lost in Translation: Modern Image Classifiers still degrade even under simple Translations »
Leander Kurscheidt · Matthias Hein -
2022 : Classifiers Should Do Well Even on Their Worst Classes »
Julian Bitterwolf · Alexander Meinke · Valentyn Boreiko · Matthias Hein -
2022 : On the interplay of adversarial robustness and architecture components: patches, convolution and attention »
Francesco Croce · Matthias Hein -
2022 Workshop: Shift happens: Crowdsourcing metrics and test datasets beyond ImageNet »
Roland S. Zimmermann · Julian Bitterwolf · Evgenia Rusak · Steffen Schneider · Matthias Bethge · Wieland Brendel · Matthias Hein -
2022 Poster: Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities »
Julian Bitterwolf · Alexander Meinke · Maximilian Augustin · Matthias Hein -
2022 Spotlight: Breaking Down Out-of-Distribution Detection: Many Methods Based on OOD Training Data Estimate a Combination of the Same Core Quantities »
Julian Bitterwolf · Alexander Meinke · Maximilian Augustin · Matthias Hein -
2022 Poster: Adversarial Robustness against Multiple and Single $l_p$-Threat Models via Quick Fine-Tuning of Robust Classifiers »
Francesco Croce · Matthias Hein -
2022 Poster: Evaluating the Adversarial Robustness of Adaptive Test-time Defenses »
Francesco Croce · Sven Gowal · Thomas Brunner · Evan Shelhamer · Matthias Hein · Taylan Cemgil -
2022 Spotlight: Adversarial Robustness against Multiple and Single $l_p$-Threat Models via Quick Fine-Tuning of Robust Classifiers »
Francesco Croce · Matthias Hein -
2022 Spotlight: Evaluating the Adversarial Robustness of Adaptive Test-time Defenses »
Francesco Croce · Sven Gowal · Thomas Brunner · Evan Shelhamer · Matthias Hein · Taylan Cemgil -
2021 : Discussion Panel #1 »
Hang Su · Matthias Hein · Liwei Wang · Sven Gowal · Jan Hendrik Metzen · Henry Liu · Yisen Wang -
2021 : Invited Talk #3 »
Matthias Hein -
2021 Poster: Mind the Box: $l_1$-APGD for Sparse Adversarial Attacks on Image Classifiers »
Francesco Croce · Matthias Hein -
2021 Spotlight: Mind the Box: $l_1$-APGD for Sparse Adversarial Attacks on Image Classifiers »
Francesco Croce · Matthias Hein -
2020 : Keynote #1 Matthias Hein »
Matthias Hein -
2020 Poster: Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack »
Francesco Croce · Matthias Hein -
2020 Poster: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks »
Francesco Croce · Matthias Hein -
2020 Poster: Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks »
Agustinus Kristiadi · Matthias Hein · Philipp Hennig -
2020 Poster: Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks »
David Stutz · Matthias Hein · Bernt Schiele -
2019 Poster: Spectral Clustering of Signed Graphs via Matrix Power Means »
Pedro Mercado · Francesco Tudisco · Matthias Hein -
2019 Oral: Spectral Clustering of Signed Graphs via Matrix Power Means »
Pedro Mercado · Francesco Tudisco · Matthias Hein