Timezone: »
One noted issue of vector-quantized variational autoencoder (VQ-VAE) is that the learned discrete representation uses only a fraction of the full capacity of the codebook, also known as codebook collapse. We hypothesize that the training scheme of VQ-VAE, which involves some carefully designed heuristics, underlies this issue. In this paper, we propose a new training scheme that extends the standard VAE via novel stochastic dequantization and quantization, called stochastically quantized variational autoencoder (SQ-VAE). In SQ-VAE, we observe a trend that the quantization is stochastic at the initial stage of the training but gradually converges toward a deterministic quantization, which we call self-annealing. Our experiments show that SQ-VAE improves codebook utilization without using common heuristics. Furthermore, we empirically show that SQ-VAE is superior to VAE and VQ-VAE in vision- and speech-related tasks.
Author Information
Yuhta Takida (Sony Group Corporation)
Takashi Shibuya (Sony Group Corporation)
WeiHsiang Liao (Sony Group Corporation)
Chieh-Hsin Lai (Sony Group Corporation)
Junki Ohmura (Sony Group Corporation)
Toshimitsu Uesaka (Sony Group Corporation)
Naoki Murata (Sony Group Corporation)
Shusuke Takahashi (Sony Group Corporation)
Toshiyuki Kumakura (Sony Corporation of America)
Yuki Mitsufuji (Sony Group Corporation)
Related Events (a corresponding poster, oral, or spotlight)
-
2022 Spotlight: SQ-VAE: Variational Bayes on Discrete Representation with Self-annealed Stochastic Quantization »
Wed. Jul 20th 06:35 -- 06:40 PM Room Room 318 - 320
More from the Same Authors
-
2023 : On the Equivalence of Consistency-Type Models: Consistency Models, Consistent Diffusion Models, and Fokker-Planck Regularization »
Chieh-Hsin Lai · Yuhta Takida · Toshimitsu Uesaka · Naoki Murata · Yuki Mitsufuji · Stefano Ermon -
2023 Poster: GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration »
Naoki Murata · Koichi Saito · Chieh-Hsin Lai · Yuhta Takida · Toshimitsu Uesaka · Yuki Mitsufuji · Stefano Ermon -
2023 Poster: FP-Diffusion: Improving Score-based Diffusion Models by Enforcing the Underlying Score Fokker-Planck Equation »
Chieh-Hsin Lai · Yuhta Takida · Naoki Murata · Toshimitsu Uesaka · Yuki Mitsufuji · Stefano Ermon -
2023 Oral: GibbsDDRM: A Partially Collapsed Gibbs Sampler for Solving Blind Inverse Problems with Denoising Diffusion Restoration »
Naoki Murata · Koichi Saito · Chieh-Hsin Lai · Yuhta Takida · Toshimitsu Uesaka · Yuki Mitsufuji · Stefano Ermon